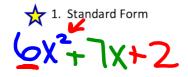
Bell Ringer Thursday $\frac{10}{3}$ Solve each equation. 1. $x^2 - 5x = 24$ -24 -

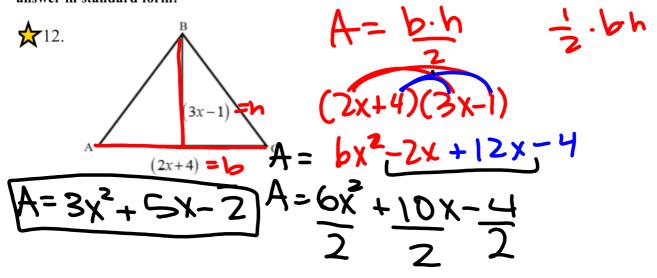

2.8 online hw due today

Chapter 2 Review

Standard 2A: operations with polynomials and Standard 2B: factoring completely

Given the polynomial $4x - 3x^2 + 3x + 2 + 9x^2$ identify the stated information from the provided list below.

			l luga 4la
a. $10x^2 + 3x + 2$	b. $(6x+1)(x+1)$	c. quadratic	-Inear
d. 4	e. trinomial	f. $(3x+1)(2x+2)$	2-quadratic
g. $6x^2 + 7x + 2$	h. 6	i. monomial	2 cular
j. cubic	k. $(2x+1)(3x+2)$	l. 9	3- CUBIC
m. $(6x+2)(x+1)$	n. 2	o. linear	
p. binomial	q3		



11.
$$(2a^2 - 4a - 3) + (a^2 + 8a - 5)$$

 $+ a^2 + 8a - 5$
 $+ a^2 + 4a - 8$
Type by term

Use the information to write an expression that represents the AREA of the shapes below. Write your answer in standard form:

Factor each expression completely.

$$18. 12a^{4} + 16a^{3} - 8a$$

$$4a (3a^{3} + 4a^{2} - 2)$$

Factor each expression completely.

22.
$$4y^3 + 6y^2 - 100y - 150$$

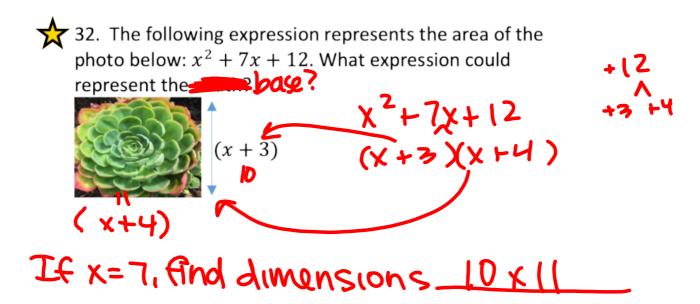
2($2y^3 + 3y^2 - 50y - 75$)
2($2y + 3$) $-25(2y + 3)$
2($2y + 3$)($y^2 - 25$)
2($2y + 3$)($y^2 - 25$)
2($2y + 3$)($y + 5$)($y - 5$)

2 () / / / / / / /

Solve for x.

$$29. \ \underline{w^2 - 100} = 0$$

$$(w + 10)(w - 10) = 0$$


$$w + 10 = 0$$

$$w + 10 = 0$$

$$w + 10 = 0$$

$$w = 10$$

$$w = 10$$

due Monday

Chapter 2 Review

Standard 2A: operations with polynomials and Standard 2B: factoring completely

Given the polynomial $4x-3x^2+3x+2+9x^2$ identify the stated information from the provided list below.

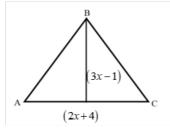
a. $10x^2 + 3x + 2$	b. $(6x+1)(x+1)$	c. quadratic
d. 4	e. trinomial	f. $(3x+1)(2x+2)$
g. $6x^2 + 7x + 2$	h. 6	i. monomial
j. cubic	k. $(2x+1)(3x+2)$	I. 9
m. $(6x+2)(x+1)$	n. 2	o. linear
p. binomial	q3	

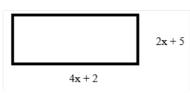
- 1. Standard Form 2. Leading Coefficient 3. Name based on degree
 - 4. Name based on # of terms
 - 5. Constant
- 6. Factored Form

Perform the operation and simplify. Write your answer in standard form.

7.
$$(5m^3 + 4m - 6) - (4m^2 - 2m + 1)$$
 8. $(3x + 5)^2$ 9. $(4x + 5)(3x + 1)$

8.
$$(3x+5)^2$$


9.
$$(4x+5)(3x+1)$$


10.
$$(3x+4)(7x^2-2x-3)$$

10.
$$(3x+4)(7x^2-2x-3)$$
 11. $(2a^2-4a-3)+(a^2+8a-5)$

Use the information to write an expression that represents the AREA of the shapes below. Write your answer in standard form:

Factor each expression completely.

14.
$$n^2 - 7n + 10$$

15.
$$4w^2 - 9$$

16.
$$5x^3 + 20x^2 + 4x + 16$$

17.
$$3v^2 + 3v - 6$$

17.
$$3y^2 + 3y - 6$$
 18. $12a^4 + 16a^3 - 8a$ 19. $2m^3 - 72m$

19.
$$2m^3 - 72m$$

$$20 \quad 3h^3 - 6h^2 + 4h - 8$$

21
$$3n^2 + 10n - 8$$

20.
$$3b^3 - 6b^2 + 4b - 8$$
 21. $3n^2 + 10n - 8$ 22. $4y^3 + 6y^2 - 100y - 150$

23.
$$24x^3 + 6x$$

24.
$$x^2 + 12x - 45$$

25.
$$d^2 - 16$$

Solve for x.

$$26.\ 3x(x-5)=0$$

27.
$$(2x-1)(x+7) = 0$$
 28. $x^2 + 16x + 64 = 0$

28.
$$x^2 + 16x + 64 = 0$$

$$29. \ w^2 - 100 = 0$$

30.
$$10m^2 + 9m + 2 = 0$$

30.
$$10m^2 + 9m + 2 = 0$$
 31. $2y^3 - y^2 - 2y + 1 = 0$

Give one value of b that would make the following polynomial factorable.

30.
$$x^2 + bx - 16$$

31. Joe writes the equation $x^2 + 4x - 12$ on the board. Parks says that it can be factored as (x+4)(x-3). Joe says that it cannot be factored at all. Which student do you agree with, if any, and why?

32. The following expression represents the area of the photo below: $x^2 + 7x + 12$. What expression could represent the width?

- 33. Find the following for the given expression $7x - x^{3} + 2x - 3x^{3} - 5x$
- A) Standard form
- B) Degree
- C) Name based on number of terms
- D) Leading coefficient
- E) Constant