

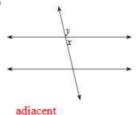
correct 6.4-6.5B

6.4-6.5B Parallel Lines and Transversals Proofs

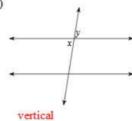
Key

Identify each pair of angles as corresponding, alternate interior, alternate exterior, consecutive interior, vertical, or linear pair.

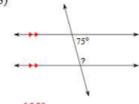
1)



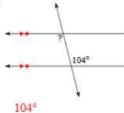
(1) 2)



Find the measure of each angle indicated.

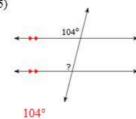


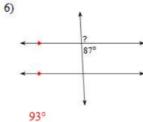
4)



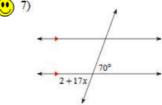
105°

5)

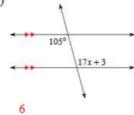




Solve for x.

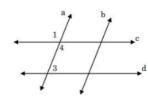


8)



9) Given: $\angle 1$ and $\angle 3$ are supplementary

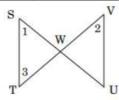
Prove: $c \parallel d$



Statement	Reason
1. ∠1 and ∠3 are supplementary	1. Given
2. ∠1≅∠4	2. Vertical Angles are Congruent
3. ∠4 and ∠3 are supplementary	3. Transitive Property
4. c d	4. Converse of Same Side Interior Angle Theorem

10) Given: $\angle 2 \cong \angle 1$ $\angle 1 \cong \angle 3$

Prove: $\overline{\mathit{ST}} \parallel \overline{\mathit{UV}}$

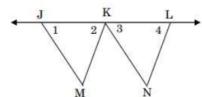


Statement	Reason
1. ∠2 ≅ ∠1	1. Given
2. ∠1≅∠3	2. Given
3. ∠2 ≅ ∠3	3. Transitive Property of Congruence
4. $\overline{ST} \parallel \overline{UV}$	4. Converse of Alternate Interior Angle Theorem

11) Given: $\overline{JM} \parallel \overline{KN}$

 $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

Prove: $\overline{\mathit{KM}} \, || \, \overline{\mathit{LN}}$

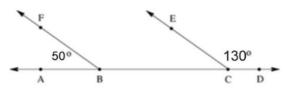


Statement	Reason
1. $\overline{JM} \parallel \overline{KN}$	1. Given
2. $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$	2. Given
3. ∠1≅∠3	3. Corresponding Angles are Congruent
4. ∠1 ≅ ∠4	4. Transitive Property of Congruence
5. ∠2 ≅ ∠4	5. Transitive Property of Congruence
6. $\overline{KM} \ \overline{LN}$	6. Converse of Corresponding Angles Theorem

12) Given: Line ABCD

 $m\angle ECD = 130^{\circ}$

 $m\angle ABF = 50^{\circ}$ Prove: $BF \parallel CE$



Statement	Reason
Line ABCD, $m\angle ECD = 130^{\circ}$, $m\angle ABF = 50^{\circ}$	1. Given
∠ECD and ∠ECB are supplementary	2. Definition of Linear Pair
3. <i>m</i> / <i>ECD</i> + <i>m</i> / <i>ECB</i> = 180°	Definition of supplementary
4. 130° + m\(\angle ECB = 180°\)	Substitution property of equality
<i>m∠ECB</i> = 50°	5. Subtraction property of equality
$m\angle ECB = m\angle ABF$	6. Substitution property of equality
BF CE	7. Converse of same side int. angles theorem

Statements:

Reasons:

a. $m\angle ECD + m\angle ABF = 180^{\circ}$

a. Definition of supplementary

b. Definition of Linear Pair

- b. $m\angle ECD + m\angle ECB = 180^{\circ}$
- c. Converse of corresponding angles theorem
- d. Addition property of equality

- c. $50^{\circ} + m\angle ECB = 180^{\circ}$ d. $130^{\circ} + m \angle ECB = 180^{\circ}$
- f. if II lines, Same side interior angles are congruent
- e. $\angle ECD$ & $\angle ECB$ are supplementary i. Substitution property of equality
- g. Subtraction property of equality
- h. Converse of same side int. angles theorem

13) Given: $m \angle 3 = 60^{\circ}$, $m \angle 5 = 2x - 8$, $a \parallel b$

Prove: $x = 64$	
Statement	Reason
$m\angle 3 = 60^{\circ}$, $m\angle 5 = 2x - 8$, $a \parallel b$	1. Given
$180 = m \angle 3 + \angle 5$	If II lines, Same Side Interior Angles are Supplementary
3. $180^{\circ} = 60 + 2x - 8$	Substitution property of equality
180 = 52 + 2x	4. Substitution property of equality
5.128 = 2x	Subtraction property of equality
6. 64 = <i>x</i>	UDivision property of equality
7. 64 = <i>x</i>	Symmetric property of equality

Statements:

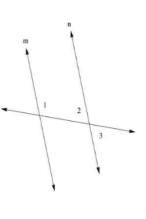
- a. 64 = x
- b. $180^{\circ} = 60 + 2x 8$
- c. 64 = x
- d. x = 64
- e. 128 = 2x

- a. Vertical angles are congruent
- b. Substitution property of equality
- d. Addition property of equality
- e. If II lines, Same Side Interior Angles are Supplementary
- f. Subtraction property of equality

14) Given: $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary

Prove: $m \parallel n$

Statement	Reason
1. ∠1 = 115°,	Given
∠1 and ∠3 are supplementary	
2. <i>m</i> ∠1+ <i>m</i> ∠3=180°	Definition of Supplementary
115 + ∠3 = 180°	3. Substitution property of equality
4. ∠3 = 65°	Subtraction Property of Equality
∠2 = ∠3	5. Vertical angles are equal in measure
6. ∠2 = 65°	Substitution Property of Equality
∠1 and ∠2 are supplementary	7. Definition of supplementary
$m \parallel n$	8. Converse of same side interior angles



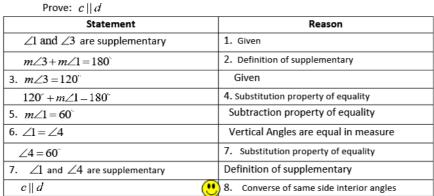
Statements:

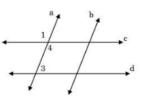
- a. $\angle 2 = 65^{\circ}$
- b. $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary

Given: $\angle 1$ and $\angle 3$ are supplementary, $m\angle 3 = 120^\circ$

- c. $m \angle 1 + m \angle 3 = 180^{\circ}$
- d. $\angle 1 + \angle 2 = 180^{\circ}$
- e. $\angle 2 + \angle 3 = 180^{\circ}$
- f. $\angle 2 = \angle 1$
- g. $\angle 3 = 65^{\circ}$

- Reasons:
- a. Definition of supplementary
- b. Vertical angles are equal in measure
- c. Converse of corresponding angles
- d. Addition property of equality
- e. Converse of same side interior angles
- f. Same side interior angles are congruent
- g. Substitution property of equality





Statements:

- a. $\angle 1 = \angle 4$
- b. $\angle 3 + 140^{\circ} = 180^{\circ}$
- c. $60^{\circ} + \angle 4 = 180^{\circ}$
- d. $m \angle 3 = 120^{\circ}$
- e. $\angle 1$ and $\angle 4$ are supplementary
- f. $\angle 3$ and $\angle 4$ are supplementary
- g. $m \angle 1 = 60^{\circ}$

Reasons:

- a. Definition of supplementary
- b. Converse of same side interior angles
- c. Converse of corresponding angles
- d. Addition property of equality
- e. Substitution property of equality
- i. Given
- g. Subtraction property of equality

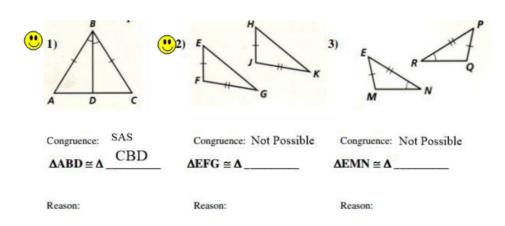
correct 8.1A

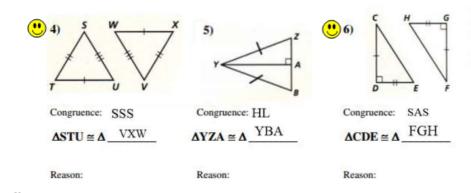
1/2 pt each

Name:	KEY	

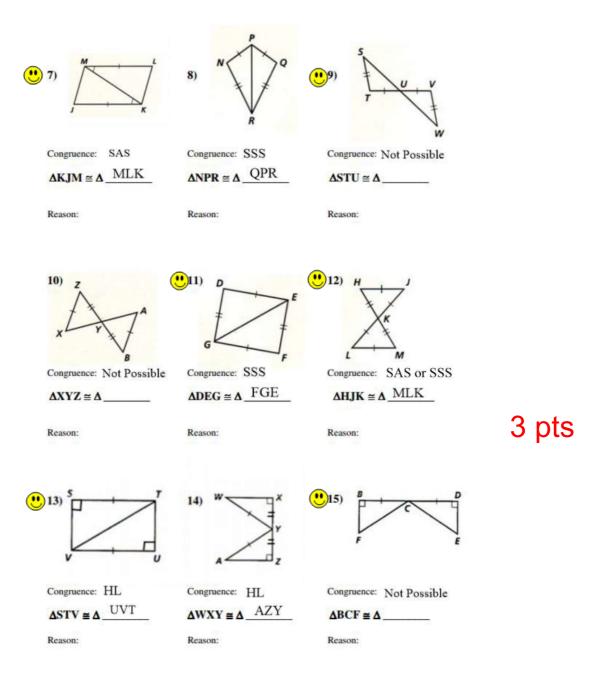
Section 8.A Congruent Triangle Worksheet

- A) Determine whether the following triangles are congruent.
- B) If they are, name the triangle congruence (Pay attention to proper correspondence when naming the triangles) and then identify the theorem or postulate (SSS, SAS, ASA, AAS, HL) that supports your conclusion.
- C) Be sure to show any additional congruence markings you used in your reasoning.
- D) If the triangles cannot be proven congruent, state "not possible." Then give the reason it is not possible.



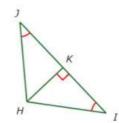


2 pts



16. Given: $\underline{\angle I}\cong \underline{\angle J}$ $\overline{HK}\perp \overline{IJ}$

Prove: $\overline{JK} \cong \overline{IK}$

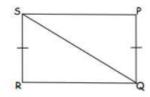


3 pts

Statement	Reason
1. ∠ <i>I</i> ≅ ∠ <i>J</i>	1. Given
2. $\overline{HK} \perp \overline{IJ}$	2. Given
3. ∠HKI and ∠HKJ are right angles	3. Definition of Perpendicular
4. ∠ <i>HKI</i> ≅ ∠ <i>HKJ</i>	4. Right angles are congruent
5. <u>HK</u> ≅ <u>HK</u>	5. Reflexive Property of Congruence
6. △ <i>HKI</i> ≅ △ <i>HKJ</i>	6. AAS
7. <i>JK</i> ≅ <i>IK</i>	7. CPCTC

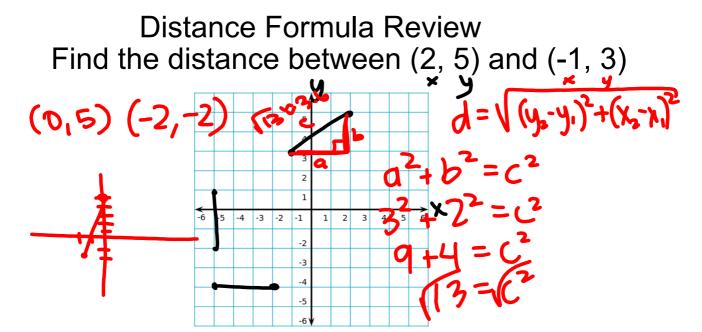
17. Given: $\overline{RS} \cong \overline{PQ}$

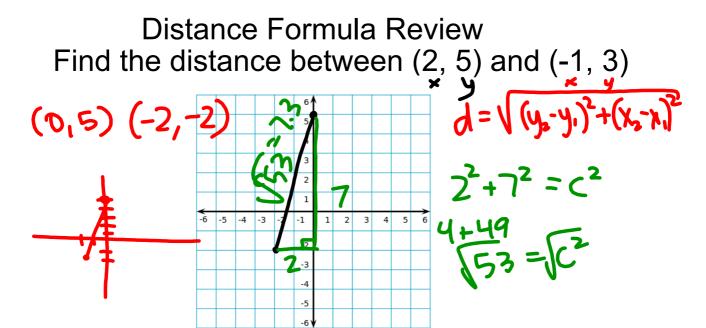
 $\angle P$ and $\angle R$ are right angles Prove: $\triangle PQS \cong \triangle RSQ$



Statement	Reason
1. $\overline{RS} \cong \overline{PQ}$	1. Given
2. ∠P and ∠R are right angles	2. Given
3. $\triangle PQS$ and $\triangle RSQ$ are right triangles	3. Definition of Right Triangle
4. $\overline{SQ} \cong \overline{SQ}$	4. Reflexive Property of Congruence
$5. \ \triangle PQS = \triangle RSQ$	5. HL

correct 8.1B ws TOMORROW





Reasons for Proofs Chapter 8

Triangles Postulate & Theorems

Triangle Sum Theorem: The angles of a triangle add to 180°

SSS Postulate SAS Postulate ASA Postulate AAS Theorem HL Theorem

CPCTC: Corresponding Parts of Congruent Triangles are Congruent

Isosceles Triangles

Definition of an Isosceles Triangle: Two sides of a triangle are congruent **Isosceles Triangle Theorem**: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Midsegments of a Triangle

Definition of a Midsegment: A segment connecting the midpoints of two sides of a triangle. **Midsegment Triangle Theorem:** The midsegment is parallel to the third side and is half as long.

Exterior Angles

Exterior Angle Theorem: The exterior angle is equal to the sum of the two remote *interior* angles.

Constructions

Inscribed Triangles: Construct the three Angle Bisectors. Place the compass on the incenter and draw a circle connecting the incenter to a point on any side perpendicular to the incenter.

Circumscribed Triangles: Construct the three Perpendicular Bisectors. Place the compass on the Circumcenter and draw a circle from one of the vertices.

Perpendicular Bisectors

Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

Converse of the Perpendicular Bisector Theorem: If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

Medians of a Triangle

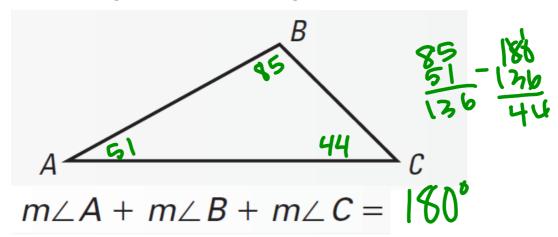
Definition of a Median: A segment whose endpoints are a vertex and the midpoint of the opposite side.

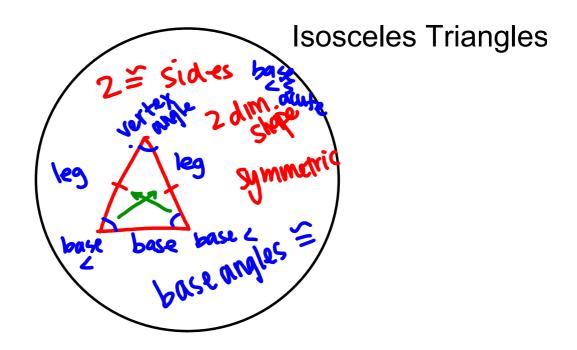
 $\label{lem:centroid:concurrency} \textbf{Centroid:} \ \ \text{The point of concurrency of the medians.}$

Medians of a Triangle Theorem: The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side.

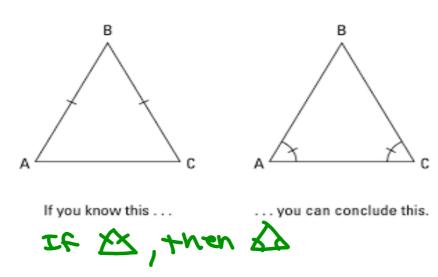
Triangle sum Theorem:

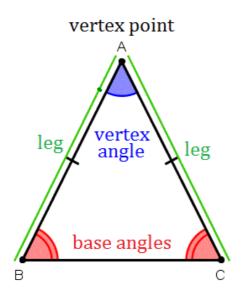
Three angles in a triangle sum to <u>(80</u>)



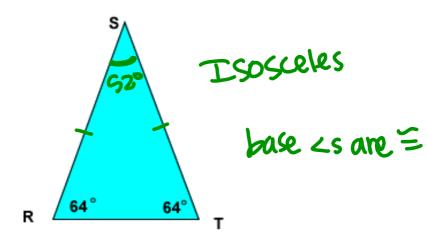


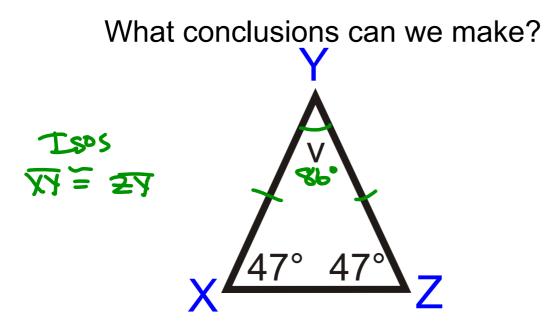
Isosceles Triangle Theorem





What conclusions can we make??



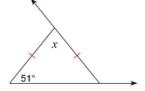


Hand out 8.2 Isosceles Triangles Proofs ws

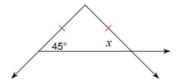
Section 8.2 Isosceles Triangle Proofs Worksheet

Name: Hr:_

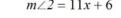
Find the value of x.



2.

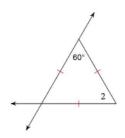


3. $m \angle 2 = 11x + 6$

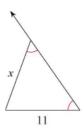


4. $m \angle 2 = x + 58$

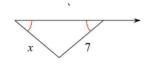
5. $m\angle 2 = x + 71$



6.



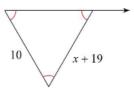
7.



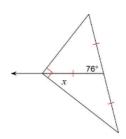
8.



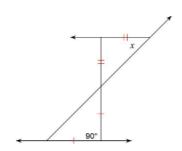
9.

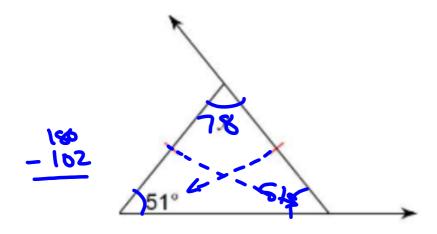


10.

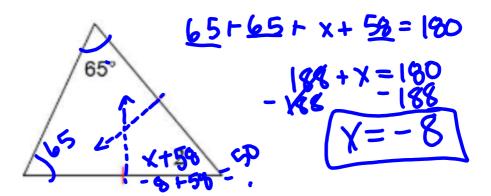


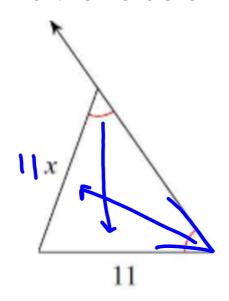
11.

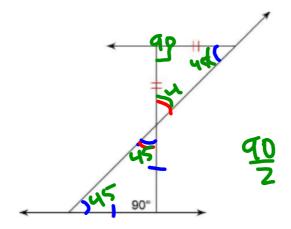




$$m \angle 2 = x + 58$$

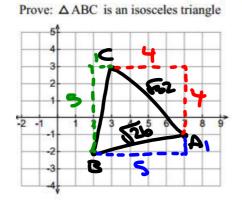






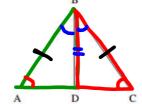
do #12-13 together

12. Given: \triangle ABC has vertices A (7, -1), B (2, -2) and C (3, 3)



 $\frac{AB}{760} = 5^{2} + 1^{2} = 6^{2}$ $\frac{AB}{760} = 6^{2}$ $BC = 1^{2} + 5^{2} = 6^{2}$ $AC = 4^{2} + 4^{2} = 6^{2}$ $\frac{AB}{760} = \frac{AB}{760} = \frac{AB$

13. Given: $\triangle ABC$ is isosceles \overline{BD} bisects $\angle ABC$ Prove: $\triangle ABD \cong \triangle CBD$



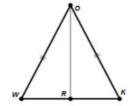
BD=BD Refl.

Statement	Reason	
1. ABCis Isoscol	es 1. Given	
2. AR & CR	2. Det'n of 1505. Δ	(s)
3. ISD bysects LABC	3. Glven	
4. <abd <="" =="" cbd<="" th=""><th>1. Defin an analybic</th><th>eutor (A)</th></abd>	1. Defin an analybic	eutor (A)
5. CA S CC	5. Base 2s in 1505. Dare	SCAT
6. LADD = ACBD	6. AA- C	

14. Given: △WOK is isosceles

R is the midpoint of \overline{WK}

Prove: $\angle OWR \cong \angle OKR$



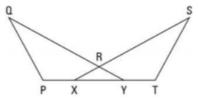
Statement	Reason
1. △WOK is isosceles	1.
2. <i>WO</i> ≅ <i>KO</i>	2.
3. R is the midpoint of \overline{WK}	3.
4. $\overline{WR} \cong \overline{KR}$	4.
5. $\overline{OR} \cong \overline{OR}$	5.
6. △ <i>WRO</i> ≅ △ <i>KRO</i>	6.
7. ∠OWR ≅ ∠OKR	7.

15. Given: $\triangle XRY$ is isosceles

$$\overline{PQ} \cong \overline{TS}$$

$$\angle Q \cong \angle S$$

Prove: $\overline{QY} \cong SX$



Statement	Reason
1. △XRY is isosceles	1.
2. $\angle x \cong \angle y$	2.
3. $\overline{PQ} \cong \overline{TS}$	3.
4. ∠ <i>Q</i> ≅ ∠ <i>S</i>	4.
5. $\triangle YQP \cong \triangle XST$	5.
6. $\overline{QY} \cong SX$	6.