$\qquad$ Hr : $\qquad$
Directions: You will rotate through 4 stations. On the catapult stations, you must do the following:

1. Launch balls from the catapult.
2. Each catapult must have a different starting height.
3. Each ball must land on the poster.
4. Each person in the group will take turns launching balls, measuring starting height, measuring maximum height or an intermediate point, and recording the data.
Materials Needed: Catapults, Tape measure, Worksheets, 6 Foot Chart

## Station 1: (Catapult \#1)

a. Height of starting point: $\qquad$
b. Distance from launch to Chart: $\qquad$
c. Vertex (Ordered Pair): $\qquad$
d. Horizontal distance the ball traveled: $\qquad$
e. Graph (Make sure to label the axes and scale):

f. Write a quadratic equation to model the motion of the ball: $\qquad$

## Station 2: (Use the graph to answer the following questions)

a. Realistic Domain $\qquad$
b. Realistic Range $\qquad$
c. $h(0)$ $\qquad$
d. When does the tennis ball reach its maximum height? $\qquad$
e. What is the maximum height of the tennis ball? $\qquad$
f. $h(1)$
g. What does $h(0.2)$ represent? $\qquad$
h. What does the $y$-intercept represent? $\qquad$
i. What does the x-intercept represent? $\qquad$

## Station 3: (Rocket)

a. Height of starting point: $\qquad$
b. Distance from launch to landing spot: $\qquad$
c. Vertex (Ordered Pair): $\qquad$
d. Horizontal distance the rocket traveled: $\qquad$
e. Graph (Make sure to label the axes and scale):
f. Write a quadratic equation to model the motion of the rocket: $\qquad$
$\qquad$ Hr : $\qquad$

1. The graph represents the height of an air-filled ball thrown in a swimming pool.
a) What does the $y$-intercept represent?
b) What does the $x$-intercept represent?
c) When does the ball reach the minimum height, what part of the graph is the min?
d) What is the minimum height?
e) Estimate the time (in seconds) when the ball has a height of -2 feet, Is it an $x$ or $y$ value, how do you know?
f) Estimate the height of the ball at 0.5
 seconds, Is it an $x$ or $y$ value, how do you know?
g) What is a realistic domain for the graph?
h) What is a realistic range for the graph?
2. The graph $h(t)$ represents the height of a rocket shot up into the sky. The equation is $h(t)=-16 t^{2}+200 t$
a) Describe the meaning of the domain for $h(\mathrm{t})$. What is a realistic domain?
b) Describe the meaning of the range for $h(\mathrm{t})$. What is a realistic range?
c) What is the $y$-intercept and what does it represent?
d) What are the $x$-intercepts and what do they represent?
e) Use the equation to find the exact maximum height.
f) How long was the rocket above 500 ft ?

g) How high is the rocket at 8 seconds?

## Station 1 Catapult

## Station 2

The graph of a tennis ball being thrown by a child.
$h(t)$
Hedght (foet)


# Station 3 Rocket 

