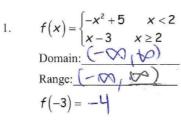
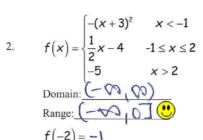
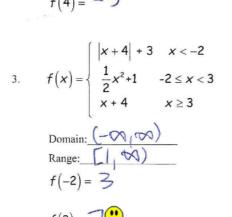

Grab a Week #12 Packet Bell Ringer

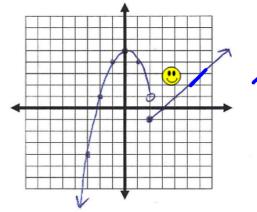


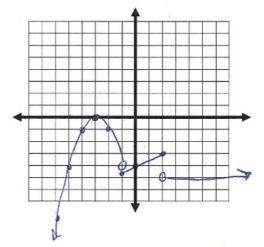

Correct Day 2 - Quadratic Piecewise Functions

Day 2 - Quadratic Piecewise Functions: Graphing, Writing and Applications

Name

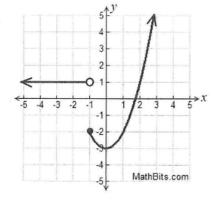

Sketch each piecewise function. Find the domain and range for each piecewise function. Then, evaluate the graph at the specified domain value.

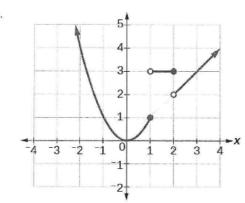




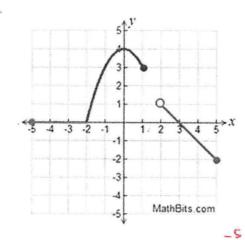

$$f(-2) = -1$$

$$f(4) = -5$$



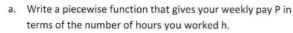

Write a piecewise function for each graph and give the domain and range.

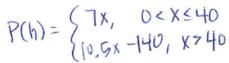
4.


 $f(x) = \begin{cases} \begin{cases} 1 & \text{if } x < -1 \\ 1 & \text{if } x < -1 \end{cases}$

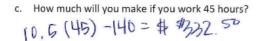
5.

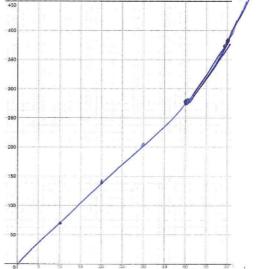
$$f(x) = \begin{cases} \chi^2, & \forall \leq 1 \\ 3, & 1 \leq x \leq 2 \\ x, & x > 2 \end{cases}$$

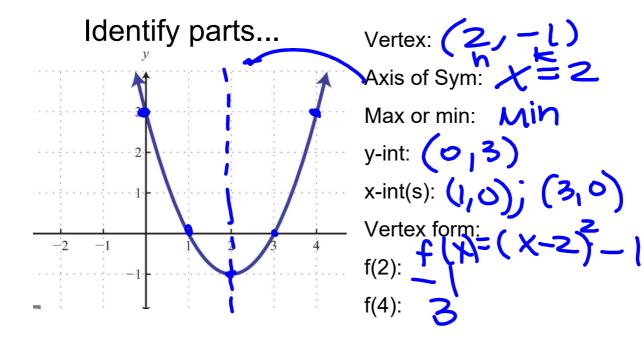

6.

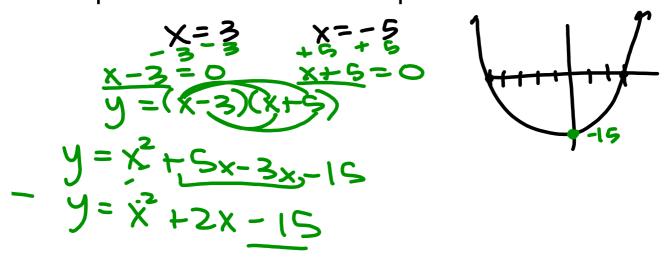



$$f(x) = \begin{cases} 0, & -5 \le x < -2 \\ -x^2 + 4, & -2 \le x \le 1 \\ -x + 3, & x \ne 2 \end{cases}$$


skipped...


7. You have a summer job that pays time and a half for overtime. (i.e. if you work more than 40 hours). After that it is 1.5 times your hourly rate of \$7.00/hr.




10 140
20 140
30 210
40 280
40 280 + 10.5(10) = 280+105 = 385
60 280 + (0.5(20) = 490
60
$$y - 365 = 10.5(x - 50)$$
 $y - 365 = 10.5x - 525$
 $y - 365 = 10.5x - 4365$
 $y - 365 = 10.5x - 140$

Average Rate of Change ws due tomorrow! Week #11 Packet due tomorrow!

Pass out Ch 3 notes...

Write the quadratic equation in standard form for a parabola with x-intercepts 3 and -5

Write the quadratic equation in vertex form for a parabola that crosses the point (1, -2) and has a vertex of (3, 5)

$$-2 = \alpha(1-3)^{2} + 5$$

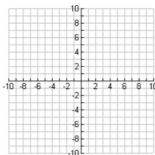
$$-2 = 49 + 6$$

$$-2 = 49$$

$$-1 = 49$$

$$a = h = 3$$

 $k = 5$
 $y = -\frac{7}{4}(x-3)^2 + 5$


due Wednesday - do # 2 and 5 together

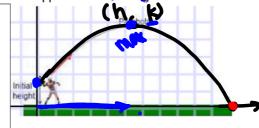
Applications of Quadratics From Graphs

Name: Hr:

Given the function below find the following.

1.
$$y = -2x^2 + 8x - 10$$

- A) Vertex Form _____
- B) Vertex
- C) Axis of Symmetry __
- D) Max/Min
- E) x-intercept
- F) y-intercept
- G) Domain and Range
- H) f(1)_
- I) Sketch the graph

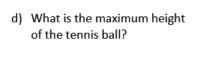

h(t)

2. Given the picture below, match the key features on the left to real world application on the right.

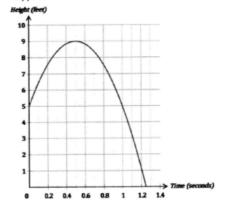
- A. x coordinate of the Vertex (h)
- B. y coordinate of the Vertex (k)
- C. y-intercept
- D. x-intercept
- E. Realistic domain 🛕
- F. Realistic Range
- G. f(3): Substitute 3 in for x and find y

The starting distance to the ending distance
Starting height

- at a distance of 3 units how high is the ball Maximum height
- Where it lands
 From ground level to the
 maximum height
 - How far it has gone at the maximum height


3. The graph h(t) represents the height of a tennis ball thrown upward.

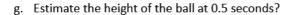
a) Domain:

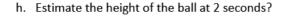

f) h(0.2)

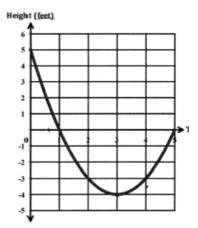
b) Range:

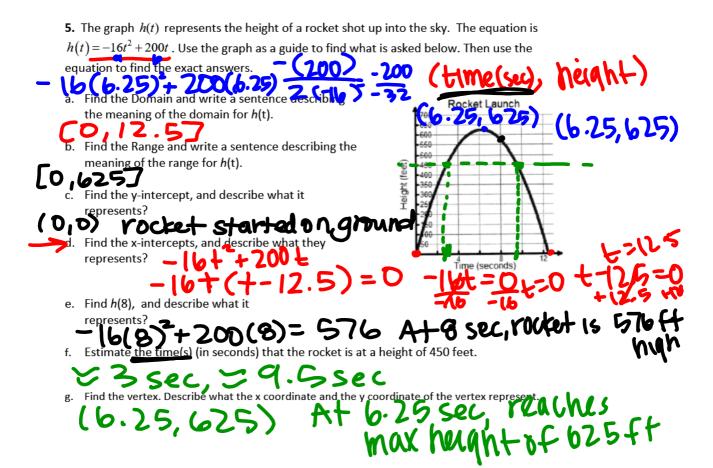
- g) h(1)
- c) When does the tennis ball reach its maximum height?
- h) What does h(0.2) represent?

i) What does the y-intercept represent? What is the y-intercept?


e) h(0)


j) What does the x-intercept represent? What is the x-intercept 4. The graph represents the height of an air-filled ball thrown in a swimming pool.




Range:

- b. What does the y-intercept represent?
- c. What does the x-intercept represent?
- d. When does the ball reach the minimum height?
- e. What is the minimum height?
- f. Estimate the time (in seconds) when the ball has a height of -2 feet?

