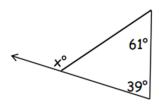

Section 8.4 Exterior Angles

Exterior Angle Theorem: The exterior angle is equal to the sum of the two remote interior angles.

1. Which of the angles in the figure are not exterior angles of the triangle?

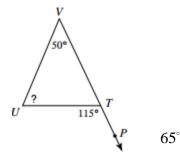

 $\angle 2, \angle 5, \angle 8$

2. Which of the angles are the exterior angles of the triangle? (Hint: there are six of them.)

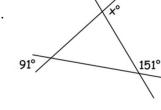

 $\angle 1, \angle 3, \angle 4, \angle 6, \angle 7, \angle 9$

Solve for the variable or the missing angle in the following problems:

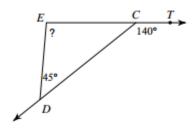
1.



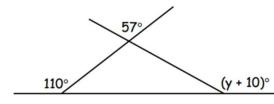
2.



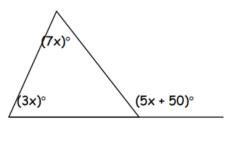
 $x = 100^{\circ}$


3.

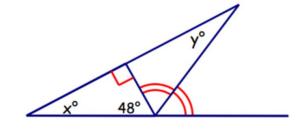
1



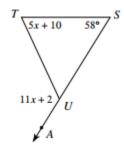
5.


95°

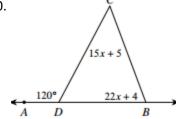
6.


y = 117

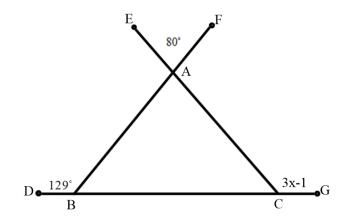
7.


x = 10

8.


 $x = 42^{\circ}$ $y = 24^{\circ}$

9.


x=11

10.

x = 3

11. Given: $m\angle DBA = 129^{\circ}$ $m\angle EAF = 80^{\circ}$ $m\angle ACG = 3x - 1$ Prove: x = 44

Statement	Reason
1. <i>m∠DBA</i> = 129°	1. Given
2. $m\angle DBA + m\angle ABC = 180^{\circ}$	2. Definition of Linear Pair
3. $129^{\circ} + m \angle ABC = 180^{\circ}$	3. Substitution Property of Equality
$4. \ m \angle ABC = 51^{\circ}$	4. Subtraction Property of Equality
5. $m\angle EAF = 80^{\circ}$	5. Given
6. $m\angle CAB = 80^{\circ}$	6. Vertical Angles are Equal
7. $m\angle ACG = 3x - 1$	7. Given
8. $m\angle ABC + m\angle CAB = m\angle ACG$	8. Exterior Angle Theorem
9. $3x-1=51^{\circ}+80^{\circ}$	9. Substitution Property of Equality
10. $3x-1=131^{\circ}$	10. Substitution Property of Equality
11. $3x = 132^{\circ}$	11. Addition Property of Equality
12. $x = 44$	12. Division Property of Equality