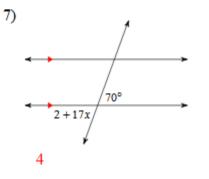
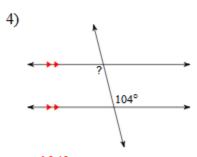
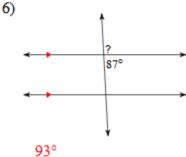
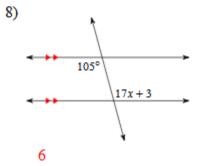
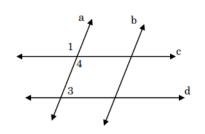

Identify each pair of angles as corresponding, alternate interior, alternate exterior, consecutive interior, vertical, or linear pair.

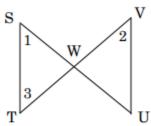



Find the measure of each angle indicated.

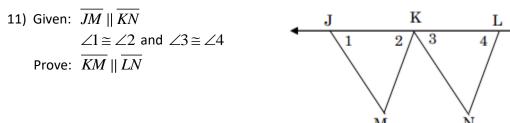



Solve for x.




Кеу

9) Given: $\angle 1$ and $\angle 3$ are supplementary Prove: $c \parallel d$



Statement	Reason
1. $\angle 1$ and $\angle 3$ are supplementary	1. Given
2. ∠1 ≅ ∠4	2. Vertical Angles are Congruent
3. $\angle 4$ and $\angle 3$ are supplementary	3. Transitive Property
4. $c \parallel d$	4. Converse of Same Side Interior Angle Theorem

10) Given: $\angle 2 \cong \angle 1$ $\angle 1 \cong \angle 3$ Prove: $\overline{ST} \parallel \overline{UV}$

Statement	Reason
1. $\angle 2 \cong \angle 1$	1. Given
2. $\angle 1 \cong \angle 3$	2. Given
3. $\angle 2 \cong \angle 3$	3. Transitive Property of Congruence
4. $\overline{ST} \parallel \overline{UV}$	4. Converse of Alternate Interior Angle Theorem

	M N
Statement	Reason
1. $\overline{JM} \parallel \overline{KN}$	1. Given
2. $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$	2. Given
3. $\angle 1 \cong \angle 3$	3. Corresponding Angles are Congruent
$4. \ \angle 1 \cong \angle 4$	4. Transitive Property of Congruence
5. $\angle 2 \cong \angle 4$	5. Transitive Property of Congruence
6. $\overline{KM} \parallel \overline{LN}$	6. Converse of Corresponding Angles Theorem

12) Given: Line ABCD $m\angle ECD = 130^{\circ}$	F		E
$m \angle ABF = 50^{\circ}$ Prove: $BF \parallel CE$	500		130°
	A	В	C D
Statement			Reason
Line ABCD, $m \angle ECD = 130^\circ$, $m \angle ABF = 50^\circ$		1. Given	
$\angle ECD$ and $\angle ECB$ are supplementary		2. Definition of Linear Pair	
3. $m\angle ECD + m\angle ECB = 180^{\circ}$		Definition of supplementary	
4. $130^\circ + m \angle ECB = 180^\circ$		Substitution property of equality	
$m \angle ECB = 50^{\circ}$		5. Subtraction property of equality	
$m \angle ECB = m \angle ABF$		6. Substitution property of equality	
$BF \parallel CE$		7. Converse of same side int. angles theorem	

Statements:

Reasons:

- a. Definition of supplementary b. Definition of Linear Pair
- c. Converse of corresponding angles theorem d. Addition property of equality

5

c. $50^\circ + m \angle ECB = 180^\circ$

a. $m \angle ECD + m \angle ABF = 180^{\circ}$

b. $m \angle ECD + m \angle ECB = 180^{\circ}$

- d. $130^{\circ} + m \angle ECB = 180^{\circ}$
- e. Givenf. if Il lines, Same side interior angles are congruentg. Subtraction property of equalityh. Converse of same side int. angles theorem
- e. $\angle ECD$ & $\angle ECB$ are supplementary i. Substitution property of equality
- **13)** Given: $m \angle 3 = 60^{\circ}$, $m \angle 5 = 2x 8$, $a \parallel b$

Prove: x = 64

Prove: $x = 64$	
Statement	Reason
$m \angle 3 = 60^\circ$, $m \angle 5 = 2x - 8$, $a \parallel b$	1. Given
$180 = m \angle 3 + \angle 5$	2. If II lines, Same Side Interior Angles are Supplementary
3. $180^{\circ} = 60 + 2x - 8$	Substitution property of equality
180 = 52 + 2x	4. Substitution property of equality
5. $128 = 2x$	Subtraction property of equality
6. $64 = x$	Division property of equality
7. $64 = x$	Symmetric property of equality
Statements:	Reasons:

- a. 64 = x
- b. $180^{\circ} = 60 + 2x 8$
- c. 64 = x
- d. x = 64
- e. 128 = 2x

- easons:
- a. Vertical angles are congruent
- b. Substitution property of equality
- c. Given
- d. Addition property of equality
- e. If Il lines, Same Side Interior Angles are Supplementary

f. Subtraction property of equality

14) Given: $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary

Prove: $m \parallel n$

Statement	Reason	n
1. $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary	Given	m h
2. $m \angle 1 + m \angle 3 = 180^{\circ}$	Definition of Supplementary	
$115 + \angle 3 = 180^{\circ}$	3. Substitution property of equality	
4. $\angle 3 = 65^{\circ}$	Subtraction Property of Equality	
$\angle 2 = \angle 3$	5. Vertical angles are equal in measure	3
6. $\angle 2 = 65^{\circ}$	Substitution Property of Equality	
$\angle 1$ and $\angle 2$ are supplementary	7. Definition of supplementary	4
m n	8. Converse of same side interior angles	

Statements:

- a. $\angle 2 = 65^{\circ}$
- b. $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary
- c. $m \angle 1 + m \angle 3 = 180^{\circ}$
- d. $\angle 1 + \angle 2 = 180^{\circ}$
- e. $\angle 2 + \angle 3 = 180^{\circ}$
- f. $\angle 2 = \angle 1$
- g. $\angle 3 = 65^{\circ}$
- 15) Given: $\angle 1$ and $\angle 3$ are supplementary, $m \angle 3 = 120^{\circ}$ Prove: $c \parallel d$

Reasons:

- a. Definition of supplementary
- b. Vertical angles are equal in measure
- c. Converse of corresponding angles
- d. Addition property of equality
- e. Converse of same side interior angles
- f. Same side interior angles are congruent

 $1 \longrightarrow c$

g. Substitution property of equality

Reason	
1. Given	
2. Definition of supplementary	
Given	
4. Substitution property of equality	
Subtraction property of equality	
Vertical Angles are equal in measure	
7. Substitution property of equality	
Definition of supplementary	
8. Converse of same side interior angles	
Reasons:	
a. Definition of supplementary	
b. Converse of same side interior angles	
c. Converse of corresponding angles	
d. Addition property of equality	
e. Substitution property of equality	
i. Given	
g. Subtraction property of equality	