In Exercises 1–6, write an equation in point-slope form of the line that passes through the given point and has the given slope.

1.
$$(3, 4)$$
 m = 3

3.
$$(0, -2)$$
 m = $\frac{4}{5}$

4.
$$(-1, -3)$$
 m = $-\frac{1}{3}$

5.
$$(4, 0)$$
 m = 2

6. (-1, 1) m =
$$\frac{1}{3}$$

In exercises 7-9, graph the line given a point on the line and the slope.

7.
$$(-6, 5)$$
 m = -2

8. (3, -1) m =
$$\frac{1}{3}$$

9.
$$(0, -4)$$
 m = 3

In exercises 10-12, give the slope of the following lines, then name a point on each line.

10.
$$y + 6 = \frac{5}{6}(x + 1)$$

11.
$$y - 3 = -\frac{2}{5}(x + 2)$$

12.
$$y = -\frac{1}{2}(x-5)$$

In exercises 13-14, graph the lines given the equation in point-slope form

13.
$$y + 2 = 3(x - 1)$$

14.
$$y-5=-\frac{3}{4}(x+4)$$

In exercises 15-16, write an equation of the line in point-slope form that passes through the given points

In Exercises 17–20, convert the equation from point-slope form to slope-intercept form.

17.
$$y + 6 = -2(x - 4)$$

18.
$$y + 7 = 4(x + 3)$$

19.
$$y - 8 = \frac{1}{3}(x + 9)$$

20.
$$y - 1 = \frac{2}{5}(x + 10)$$

21. Is y-4=3(x+1) an equation of a line through (-2, 1)? Explain.