

FINAL REVIEW - Part 2

Name:

Circle the correct answer and then write it in the answer blank provided. Show all work on every problem.

Reason Choices: Substitution Midsegments are parallel to the base corresponding angles are congruent

 $\angle A + 78^{\circ} + 30^{\circ} = 180^{\circ}$

 $\angle A + 108^{\circ} = 180^{\circ}$

 $\angle A = 72^{\circ}$

Transitive Property Given subtraction Property All angles sum to 180° in a triangle

9. Substitution property of equality

10. Subtraction property of equality

FINAL REVIEW - Part 2

Name:

Circle the correct answer and then write it in the answer blank provided. Show all work on every problem.

20. Given: $\angle 1$ and $\angle 3$ are supplementary

Prove: $m \parallel n$

Statement	Reason	n
1. $\angle 1$ and $\angle 3$ are supplementary	Given	m
2. $m \angle 1 + m \angle 3 = 180^{\circ}$	Definition of Supplementary	
$\angle 2 = \angle 3$	3. Vertical angles are equal in measure	
4. $\angle 1 + \angle 2 = 180^{\circ}$	Substitution Property of Equality	
$\angle 1$ and $\angle 2$ are supplementary	5. Definition of supplementary	3
m n	6. Converse of same side interior angles	

Statements:

- a. $\angle 2 = 65^{\circ}$
- b. $\angle 1$ and $\angle 3$ are supplementary
- c. $m \angle 1 + m \angle 3 = 180^{\circ}$
- d. $\angle 1 + \angle 2 = 180^{\circ}$
- e. $\angle 2 + \angle 3 = 180^{\circ}$
- f. $\angle 2 = \angle 1$

g.
$$\angle 3 = 65^{\circ}$$

a. Definition of supplementary

Reasons:

- b. Vertical angles are equal in measure
- c. Converse of corresponding angles
- d. Addition property of equality
- e. Converse of same side interior angles
- f. Same side interior angles are congruent
- g. Substitution property of equality

21. Given: S is the midpoint of \overline{QR}

 $\overline{PS} \perp \overline{QR}$ Prove: $\angle R \cong \angle Q$

Statement	Reason
S is the midpoint of \overline{QR}	1. Given
$\overline{RS} \cong \overline{SQ}$	2. Definition of a Midpoint
$\overline{PS} \perp \overline{QR}$	3. Given
$ ot \!\!\!\! extsf{PSR} extsf{ and } ot \!\!\!\! extsf{PSQ} extsf{ are right angles}$	4. Definition of Perpendicular
$\angle PSR \cong \angle PSQ$	5. Right angles are congruent
$\overline{PS} \cong \overline{PS}$	6. Reflexive Property of Congruence
$\triangle PSR \cong \triangle PSQ$	7. SAS
$\angle R \cong \angle Q$	7. CPCTC

R

Reason Choices:Right angles are congruentSubstitutionTransitive PropertyGivenCPCTCReflexive Property of congruenceDefinition of a MidpointSASAASSASDefinition of PerpendicularCorresponding angles are congruentRight angles are congruentRight angles are congruent

Math 2B – Regular

 $180 = m \angle 3 + \angle 5$

3. $180^{\circ} = 60 + 2x - 8$

180 = 52 + 2x

FINAL REVIEW - Part 2

Name:

Circle the correct answer and then write it in the answer blank provided. Show all work on every problem.

22. Given:	$m \angle 3 = 60^{\circ}$, $m \angle 5 = 2x - 8$, $a \parallel b$
Prove: $x =$	64

Statement

 $m \angle 3 = 60^{\circ}$, $m \angle 5 = 2x - 8$, $a \parallel b$

Statements:

a. 64 = x

5. 128 = 2x

6. 64 = x

7. x = 64

- b. $180^{\circ} = 60 + 2x 8$
- c. 64 = x
- d. x = 64
- e. 128 = 2x

- Reasons:
- a. Vertical angles are congruent

1. Given

- b. Substitution property of equality
- c. Given
- d. Addition property of equality
- e. If Il lines, Same Side Interior Angles are Supplementary
- f. Subtraction property of equality
- 23. Given: \overline{EH} bisects $\angle FEG$ $\overline{EF} \simeq \overline{EG}$ Prove: $\overline{FH} \cong \overline{GH}$

G Н

Statement	Reason
1. \overline{EH} bisects $\angle FEG$	1. Given
2. $\angle FEH \cong \angle GEH$	2. Definition of an angle bisector
3. $\overline{EF} \cong \overline{EG}$	3. Given
4. $\overline{EH} \cong \overline{EH}$	4. Reflexive property of congruence
5. $\triangle EFH \cong \triangle EGH$	5. SAS
6. $\overline{FH} \cong \overline{GH}$	6. CPCTC

Reason Choices: Right angles are congruent Substitution Transitive Property Given CPCTC Reflexive Property of congruence Definition of a Midpoint SAS AAS SAS Definition of Perpendicular Definition of an angle bisector Right angles are congruent