2.
$$\overline{EF} \cong \overline{HI}$$
, $\overline{FG} \cong \overline{IJ}$, $\overline{EG} \cong \overline{HJ}$, $\angle EFG \cong \angle HIJ$, $\angle FGE \cong \angle IJH$, $\angle FEG \cong \angle IHJ$

3. 335 ft

- **4.** 128
- **5.** Yes; two pairs of sides and two pairs of \triangle are marked as \cong ; the third pair of sides are \cong by the Refl. Prop. of \cong , and the third pair of \triangle are \cong by the Third \triangle Theorem. The third pair of angles are \cong because each has measure $180 - m \angle R - m \angle RTK$.
- **6.** No; there are not three pairs of \cong corresp. sides.
- 8. a. \overline{NY}
 - **b**. / X
- 9. a. \overline{RO}
 - **b.** ∠*T*
- 10. a. ∠*A*
 - b. KL
 - c. CKLU
- **11.** a. $\angle M \cong \angle T$
 - **b.** 92
- **13.** No; the \triangle could be the same shape but not necessarily the same size.
- **14.** He has not shown that corresp. angles are \cong .
- **15**. C
- **16.** Yes. The diagram shows that $\angle CBD \cong \angle ADB$ and $\angle CDB \cong \angle ABD$. By the Third \triangle Theorem, $\angle C \cong \angle A$. The diagram shows that $\overrightarrow{CD} \cong \overrightarrow{AB}$ and $CB \cong AD$. $BD \cong BD$ by the Relf. Prop. of \cong . So $\triangle BCD \cong \triangle DAB$ by the def. of $\cong \triangle$.
- **17.** $m \angle A = m \angle D = 20$ **18.** $m \angle B = m \angle E = 12$

19. BC = EF = 8

20. AC = DF = 19

21. 43

22. x = 15, t = 2