Bell Ringer

Section 5.5

1. Solve
$$4^x = \frac{1}{64}$$
. $4^x = 4^{-3}$ $1 = 4^{-3}$

2. Solve $9^{x-2} = 729$.

3. The Function $M(x) = 6^{x-3}$ models the number of members in an online social networking site after x days. According to the model, after how many days will there be 1296 members?

4. Use a graph to solve
$$81 = 3^{k-1}$$
.

5. Find the equation of a line perpendicular to y = 4x + 1, that passes through (-1, -7)

Solutions

Section 5.5

1. Solve $4^x = \frac{1}{64}$. x = -3

2. Solve $9^{x-2} = 729$. x = 5

3. The Function $M(x) = 6^{x-3}$ models the number of members in an online social networking site after x days. According to the model, after how many days will there be 1296 members?

7 days

4. Use a graph to solve $81 = 3^{x-1}$.

5. Find the equation of a line perpendicular to y = 4x + 1, that passes through (-1, -7). $y = -\frac{1}{4}x + \frac{29}{4}$

correct 5.4 #s 9-14, 16-24, 26-27

- 16. The student did not convert 3.5% to a decimal; $A = 500(1 + \frac{0.035}{4})^{(4 \cdot 2)} = 500(1.00875)^8 \approx 536.09.$
 - **9.** 4

10. 15

11. 0.2

- **12.** 0.94
- **13.** \$32,577.89
- **14.** If b > 1, then it is exponential growth. If 0 < b < 1, then it is exponential decay.
- **11.** exponential growth **18.** exponential decay

•19. neither

- 20. exponential decay
- **21.** $y = 10 \cdot 0.5^{x}$
- **22.** a. $y = 128 \times (\frac{1}{2})^x$

									1
X	0	1	2	3	4	5	6	7	
У	128	64	32	16	8	4	2	1	

- **b.** No, Sample answer: The table made it the easiest to determine that it is not possible for 24 teams to remain after a round.
- c. the whole numbers from 0 to 7; The domain represents the end of round x.
- d. 4 teams
- •23. No; the value of the car is about \$5243.
- 24. about 9 years
 - **26.** exponential growth **27.** neither

due tomorrow 5.5 #s 7-12, 14, 15, 17-24, 26

Hand out new hw trackers
Week 1 hw trackers due today

WHITEBOARD REVIEW

Write using only positive exponents

Write using only positive exponents

$$\frac{a^{-1}b^{-2}}{c^{-4}d'}$$
 or $\frac{c^{4}}{b^{2}d}$

Evaluate the function when x = -1 and 0

$$f(x) = 2 \cdot 3^{x}$$

$$x = -1: \quad 2 \cdot 3^{x} - \frac{2}{3}$$

$$x = 0: \quad 2 \cdot 3^{x} = 2 \cdot 1 = 2$$

$$x = 0:$$

Evaluate the function when x = 1 and 2

$$f(x) = 2 \cdot 3^{x}$$

$$x = 2$$
: $2 - 3^2 = 7 \cdot 0 = 8$

Evaluate the expression if a = 2

$$\frac{a^{3} \cdot a^{4}}{a^{4}} = a^{2} = 2^{2} = 4$$

$$2^{3} \cdot 2^{-1}$$

$$8 \cdot \frac{1}{2} = 4$$

Evaluate the expression if a = 1/2

$$(a^{3} \cdot a^{-1})^{5}$$

$$(\frac{1}{2})^{3} \cdot (\frac{1}{2})^{5}$$

Does the following function represent growth or decay?

$$f(x) = 2(1.43)^{x}$$

Does the following function represent growth or decay?

$$f(x) = 2(\underline{43})^{x}$$

What is the growth rate of the function below?

Give it as a percentage...

$$f(x) = 2(1.43)^{x}$$

$$(1+1)^{x}$$

$$y = a(1+1)^{x}$$

$$(1+1)^{x}$$

$$(1+1)^{x}$$

$$(1+1)^{x}$$

$$(1+3)^{x}$$

What is the decay rate of the function below?

Give it as a percentage...

$$f(x) = 2(.43)^{x}$$

A population of 200 tigers decreases at an annual rate of 4%. How many tigers will there be in 5 years?

here be in 5 years?

$$y = \underline{a}(l \pm r)^{x}$$

$$y = 200(l - .04)^{5}$$

$$200(.96)^{5}$$

$$\times 1(.03 + 1.9ex)^{5}$$

A population of bees starts at 300 and grows at a rate of 16%. How many bees will there be in 4 years?

Graph
$$f(x) = 2 \cdot 3^x$$

Graph
$$f(x) = 8 \cdot \left(\frac{1}{2}\right)^{x}$$

$$2^{\frac{x-2}{2}} = \mathbb{D}^{\frac{y}{2}} \qquad \begin{array}{c} x - 2 = y \\ y = b \end{array}$$

$$\frac{49^{2N-1}}{7^{2(2x-1)}} = \frac{1}{7}, \quad 49^{2-1} \\
49^{2N-1} = \frac{1}{7}, \quad 49^{2-1} \\
449^{2N-1} = \frac{1}{7}, \quad 49^{2-1} \\
47^{2N-1} = \frac{1}{7}, \quad 49^{2-1} = \frac{1$$

$$3.2^{x} = 24$$
 $2^{x} = 8$
 $2^{x} = 2$
 4
 $2^{x} = 8$
 4
 4

$$5.2^{x} - 152 = 8$$

$$+ 152 + 152$$

$$- 152 = 160$$

$$- 7^{x} = 32$$

$$- 7^{x} = 7$$

$$- 7^{x} = 3$$

$$\frac{8}{4} - 2^{x} = -2$$

$$\frac{2^{x}}{4^{2}} = -8$$

due Wednesday

SM1

Name ID: 1

Exponential Equations

Date_____ Period____

Solve each equation.

1)
$$4^{-3n} = 16$$

2)
$$3^{-n} = 3^3$$

3)
$$3^{3b-2} = 3^{-b-1}$$

4)
$$4^{b-3} = 4^{2b}$$

5)
$$5^{2x+3} = 5^{-2x-1}$$

6)
$$6^{-n} = 36$$

7)
$$4^{2n} = 64$$

8)
$$5^{-b} = 25$$

9)
$$4^{-3n+2} = 4^{-n-3}$$

10)
$$3^{-3x-2} = 3^{-2x}$$

11)
$$6^{-3x-3} = 6^{2x}$$

12)
$$4^{-3x-3} = 4^{2x}$$

13)
$$3^{-3n} = 81$$

14)
$$2^{-3r} = 2^{-r}$$

15)
$$4^{-2x-2} = 16$$

16)
$$6^{2n} = 6^{-n-1}$$

Answers to Exponential Equations (ID: 1)

1)
$$\left\{-\frac{2}{3}\right\}$$

3)
$$\left\{\frac{1}{4}\right\}$$

7)
$$\frac{(4)}{(3)}$$

9)
$$\left\{\frac{5}{2}\right\}$$

11)
$$\left\{-\frac{3}{5}\right\}$$

12)
$$\left\{-\frac{3}{5}\right\}$$

$$13) \left\{-\frac{4}{3}\right\}$$