Parallel Lines and Transversals Proofs KEY

Identify each pair of angles as corresponding, alternate interior, alternate exterior, consecutive interior, vertical, or linear pair.

Find the measure of each angle indicated.

9) Given: $\angle 1$ and $\angle 3$ are supplementary Prove: $c \parallel d$

Statement	Reason
1. $\angle 1$ and $\angle 3$ are supplementary	1. Given
2. $\angle 1 \cong \angle 4$	2. Vertical Angles are Congruent
3. $\angle 4$ and $\angle 3$ are supplementary	3. Transitive Property
$4. \ c \parallel d$	4. Converse of Same Side Interior Angle Theorem

10) Given: $\angle STW \cong \angle UVW$ $\overleftarrow{TW} \parallel \overleftarrow{UV}$ Prove: $\angle TUV \cong \angle UVW$

Statement	Reason
1. $\angle STW \cong \angle UVW$	1. Given
2. $\overrightarrow{TW} \parallel \overrightarrow{UV}$	2. Given
3. $\angle TUV \cong \angle STW$	3. Corresponding Angles are Congruent
$4. \ \angle TUV \cong \angle UVW$	4. Transitive Property of Congruence

11) Given: $m \angle l = m \angle 3$ $m \angle l = m \angle 2$ Prove: $m \angle 3 = m \angle 4$

Statement	Reason	
1. $m \angle 1 = m \angle 3$	1. Given	
2. $m \angle 1 = m \angle 2$	2. Given	
3. $m \angle 2 = m \angle 3$	3. Transitive Property of Equality	
4. $m \angle 1$ and $m \angle 3$ are corresponding angles	4. Definition of Corresponding Angles	
5. $DE \parallel BC$	5. Converse of the Corresponding angle theorem	
$6. m \angle 2 = m \angle 4$	6. Corresponding angles are congruent	
7. $m \angle 3 = m \angle 4$	7. Transitive Property of Equality	

В

12) Given: Line ABCD $m\angle ECD = 130^{\circ}$ $m \angle ABE = 50^{\circ}$	F		E
$m \angle ABF = 50^{\circ}$ Prove: $BF \parallel CE$	50%	×	130°
	A	В	C D
Statement			Reason
Line ABCD, $m \angle ECD = 130^\circ$, $m \angle$	$ABF = 50^{\circ}$	1. Given	
$\angle ECD$ and $\angle ECB$ are supplementary		2. Definition of Linear Pair	
3. $m\angle ECD + m\angle ECB = 180^{\circ}$		Definition of supplementary	
4. $130^{\circ} + m \angle ECB = 180^{\circ}$		Substitution property of equality	
$m \angle ECB = 50^{\circ}$		5. Subtraction property of equality	
$m \angle ECB = m \angle ABF$		6. Substitution property of equality	
$BF \parallel CE$		7. Converse o	f same side int. angles theorem

Statements:

Reasons:

- a. Definition of supplementary b. Definition of Linear Pair
- c. Converse of corresponding angles theorem d. Addition property of equality f. if Il lines, Same side interior angles are congruent

5

b. $m \angle ECD + m \angle ECB = 180^{\circ}$ c. $50^{\circ} + m \angle ECB = 180^{\circ}$

a. $m \angle ECD + m \angle ABF = 180^{\circ}$

- d. $130^{\circ} + m \angle ECB = 180^{\circ}$
- g. Subtraction property of equality h. Converse of same side int. angles theorem
- e. $\angle ECD$ & $\angle ECB$ are supplementary i. Substitution property of equality

e. Given

13) Given:	$m\angle 3 = 60^{\circ}$,	$m \angle 5 = 2x - 8$, $a \parallel b$
------------	----------------------------	-----------------------	-------------------

Prove: x = 64

1000 . $\lambda = 04$	
Statement	Reason
$m \angle 3 = 60^\circ$, $m \angle 5 = 2x - 8$, $a \parallel b$	1. Given
$180 = m \angle 3 + \angle 5$	2. If II lines, Same Side Interior Angles are Supplementary
3. $180^{\circ} = 60 + 2x - 8$	Substitution property of equality
180 = 52 + 2x	4. Substitution property of equality
5. $128 = 2x$	Subtraction property of equality
6. $64 = x$	Division property of equality
7. $64 = x$	Symmetric property of equality
Statements: R	easons:

- a. 64 = x
- b. $180^{\circ} = 60 + 2x 8$
- c. 64 = x
- d. x = 64
- e. 128 = 2x

- a. Vertical angles are congruent
- b. Substitution property of equality
- c. Given
- d. Addition property of equality
- e. If Il lines, Same Side Interior Angles are Supplementary

f. Subtraction property of equality

14) Given: $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary

Prove: $m \parallel n$

Statement	Reason	n
1. $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary	Given	m h
2. $m \angle 1 + m \angle 3 = 180^{\circ}$	Definition of Supplementary	
$115 + \angle 3 = 180^{\circ}$	3. Substitution property of equality	
$4. \angle 3 = 65^{\circ}$	Subtraction Property of Equality	
$\angle 2 = \angle 3$	5. Vertical angles are equal in measure	
6. $\angle 2 = 65^{\circ}$	Substitution Property of Equality	
$\angle 1$ and $\angle 2$ are supplementary	7. Definition of supplementary	1
m n	8. Converse of same side interior angles	

Statements:

- a. $\angle 2 = 65^{\circ}$
- b. $\angle 1 = 115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary
- c. $m \angle 1 + m \angle 3 = 180^{\circ}$
- d. $\angle 1 + \angle 2 = 180^{\circ}$
- e. $\angle 2 + \angle 3 = 180^{\circ}$
- f. $\angle 2 = \angle 1$
- g. $\angle 3 = 65^{\circ}$
- 15) Given: $\angle 1$ and $\angle 3$ are supplementary, $m \angle 3 = 120^{\circ}$ Prove: $c \parallel d$

Reasons:

- a. Definition of supplementary
- b. Vertical angles are equal in measure
- c. Converse of corresponding angles
- d. Addition property of equality
- e. Converse of same side interior angles
- f. Same side interior angles are congruent
- g. Substitution property of equality

Prove: $c \parallel a$	
Statement	Reason
$\angle 1$ and $\angle 3$ are supplementary	1. Given
$m \angle 3 + m \angle 1 = 180^{\circ}$	2. Definition of supplementary
3. $m \angle 3 = 120^{\circ}$	Given
$120^{\circ} + m \angle 1 = 180^{\circ}$	4. Substitution property of equality
5. $m \angle 1 = 60^{\circ}$	Subtraction property of equality
6. ∠1 = ∠4	Vertical Angles are equal in measure
$\angle 4 = 60^{\circ}$	7. Substitution property of equality
7. $\angle 1$ and $\angle 4$ are supplementary	Definition of supplementary
c d	8. Converse of same side interior angles
Statements:	Reasons:
a. $\angle 1 = \angle 4$	a. Definition of supplementary
b. $\angle 3 + 140^{\circ} = 180^{\circ}$	b. Converse of same side interior angles
c. $60^{\circ} + \angle 4 = 180^{\circ}$	c. Converse of corresponding angles
d. $m \angle 3 = 120^{\circ}$	d. Addition property of equality
e. $ ot\! \! \ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	e. Substitution property of equality
f. $\angle 3$ and $\angle 4$ are supplementary	i. Given
g. $m \angle 1 = 60^{\circ}$	g. Subtraction property of equality

