Name: \qquad Hour: \qquad

Parallel Lines and Transversals Proofs KEY

Identify each pair of angles as corresponding, alternate interior, alternate exterior, consecutive interior, vertical, or linear pair.

adjacent
2)

vertical

Find the measure of each angle indicated.
3)

105°
4)

104°
5)

104°
6)

93°

Solve for \boldsymbol{x}.
7)

4
8)

9) Given: $\angle 1$ and $\angle 3$ are supplementary Prove: $c \| d$

Statement	Reason	
1. $\angle 1$ and $\angle 3$ are supplementary	1. Given	
2. $\angle 1 \cong \angle 4$	2. Vertical Angles are Congruent	
3. $\angle 4$ and $\angle 3$ are supplementary	3. Transitive Property	
4. $c \\| d$	4. Converse of Same Side Interior Angle Theorem	

10) Given: $\angle S T W \cong \angle U V W$
$\overrightarrow{T W} \| \overrightarrow{U V}$
Prove: $\angle T U V \cong \angle U V W$

Statement	Reason	
1. $\angle S T W \cong \angle U V W$	1. Given	
2. $\overleftrightarrow{T W} \\| \overleftrightarrow{U V}$	2. Given	
3. $\angle T U V \cong \angle S T W$	3. Corresponding Angles are Congruent	
4. $\angle T U V \cong \angle U V W$	4. Transitive Property of Congruence	

11) Given: $m \angle 1=m \angle 3$
$m \angle 1=m \angle 2$
Prove: $m \angle 3=m \angle 4$

Statement	Reason	
1. $m \angle 1=m \angle 3$	1. Given	
2. $m \angle 1=m \angle 2$	2. Given	
3. $m \angle 2=m \angle 3$	3. Transitive Property of Equality	
4. $m \angle 1$ and $m \angle 3$ are corresponding angles	4. Definition of Corresponding Angles	
5. $D E \\| B C$	5. Converse of the Corresponding angle theorem	
6. $m \angle 2=m \angle 4$	6. Corresponding angles are congruent	
7. $m \angle 3=m \angle 4$	7. Transitive Property of Equality	

12) Given: Line $A B C D$
$m \angle E C D=130^{\circ}$
$m \angle A B F=50^{\circ}$

Prove: $B F \| C E$

Statement	Reason	
Line $\mathrm{ABCD}, m \angle E C D=130^{\circ}, m \angle A B F=50^{\circ}$	1. Given	
$\angle E C D$ and $\angle E C B$ are supplementary	2. Definition of Linear Pair	
3. $m \angle E C D+m \angle E C B=180^{\circ}$	Definition of supplementary	
4. $130^{\circ}+m \angle E C B=180^{\circ}$	Substitution property of equality	
$m \angle E C B=50^{\circ}$	5. Subtraction property of equality	
$m \angle E C B=m \angle A B F$	6. Substitution property of equality	
$B F \\| C E$	7. Converse of same side int. angles theorem	

Statements:

Reasons:

a. $m \angle E C D+m \angle A B F=180^{\circ}$
a. Definition of supplementary b. Definition of Linear Pair
b. $m \angle E C D+m \angle E C B=180^{\circ}$
c. Converse of corresponding angles theorem
d. Addition property of equality
c. $50^{\circ}+m \angle E C B=180^{\circ}$
e. Given
f. if Il lines, Same side interior angles are congruent
d. $130^{\circ}+m \angle E C B=180^{\circ}$
g. Subtraction property of equality
h. Converse of same side int. angles theorem
e. $\angle E C D \& \angle E C B$ are supplementary i. Substitution property of equality
13) Given: $m \angle 3=60^{\circ}, m \angle 5=2 x-8, a \| b$

Prove: $x=64$

Statement	Reason	
$m \angle 3=60^{\circ}, m \angle 5=2 x-8, a \\| b$	1. Given	
$180=m \angle 3+\angle 5$	2. If II lines, Same Side Interior Angles are Supplementary	
$3.180^{\circ}=60+2 x-8$	Substitution property of equality	
$180=52+2 x$	4. Substitution property of equality	
$5.128=2 x$	Subtraction property of equality	
$6.64=x$	Division property of equality	
$7.64=x$	Symmetric property of equality	

Statements:
a. $64=x$

Reasons:
a. Vertical angles are congruent
b. $180^{\circ}=60+2 x-8$
b. Substitution property of equality
c. $64=x$
c. Given
d. $x=64$
d. Addition property of equality
e. $128=2 x$
e. If II lines, Same Side Interior Angles are Supplementary
f. Subtraction property of equality
14) Given: $\quad \angle 1=115^{\circ}, \angle 1$ and $\angle 3$ are supplementary

Prove: $m \| n$

Statement	Reason	
$1 . \angle 1=115^{\circ}$, $\angle 1$ and $\angle 3$ are supplementary	Given	
2. $m \angle 1+m \angle 3=180^{\circ}$	Definition of Supplementary	
$115+\angle 3=180^{\circ}$	3. Substitution property of equality	
$4 . \angle 3=65^{\circ}$	Subtraction Property of Equality	
$\angle 2=\angle 3$	5. Vertical angles are equal in measure	
$6 . \angle 2=65^{\circ}$	Substitution Property of Equality	
$\angle 1$ and $\angle 2$ are supplementary	7. Definition of supplementary	
$m \\| n$	8. Converse of same side interior angles	

Statements:

a. $\angle 2=65^{\circ}$
b. $\angle 1=115^{\circ}, \angle 1$ and $\angle 3$ are supplementary
c. $m \angle 1+m \angle 3=180^{\circ}$
d. $\angle 1+\angle 2=180^{\circ}$
e. $\angle 2+\angle 3=180^{\circ}$
f. $\angle 2=\angle 1$
g. $\angle 3=65^{\circ}$
15) Given: $\angle 1$ and $\angle 3$ are supplementary, $m \angle 3=120^{\circ}$

Prove: $c \| d$
Prove: $c \| d$

Statement		
$\angle 1$ and $\angle 3$ are supplementary	1. Given	
$m \angle 3+m \angle 1=180^{\circ}$	2. Definition of supplementary	
3. $m \angle 3=120^{\circ}$	Given	
$120^{\circ}+m \angle 1=180^{\circ}$	4. Substitution property of equality	
5. $m \angle 1=60^{\circ}$	Subtraction property of equality	
6. $\angle 1=\angle 4$	Vertical Angles are equal in measure	
$\angle 4=60^{\circ}$	7. Substitution property of equality	
7. $\angle 1$ and $\angle 4$ are supplementary	Definition of supplementary	
$c \\| d$	8. Converse of same side interior angles	

Statements:

a. $\angle 1=\angle 4$
b. $\angle 3+140^{\circ}=180^{\circ}$
c. $60^{\circ}+\angle 4=180^{\circ}$
d. $m \angle 3=120^{\circ}$
e. $\angle 1$ and $\angle 4$ are supplementary
f. $\angle 3$ and $\angle 4$ are supplementary
g. $m \angle 1=60^{\circ}$

Reasons:

a. Definition of supplementary
b. Vertical angles are equal in measure
c. Converse of corresponding angles
d. Addition property of equality
e. Converse of same side interior angles
f. Same side interior angles are congruent
g. Substitution property of equality

Reasons:

a. Definition of supplementary
b. Converse of same side interior angles
c. Converse of corresponding angles
d. Addition property of equality
e. Substitution property of equality
i. Given
g. Subtraction property of equality

