Simplify $\sqrt{128} \quad 8 \sqrt{2}$

$2 \sqrt{8}$
$6 \sqrt{2}$

$$
4 \sqrt{6}
$$

Simplify $\frac{8}{\sqrt{2}}-\frac{\sqrt{2}}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{4}=2}=\frac{8 \sqrt{2}}{2} 4 \sqrt{2}$

2

$8 \sqrt{2}$

$$
4 \sqrt{2}
$$

4

Simplify $4 \sqrt{7}-5 \sqrt{28}$
 $-6 \sqrt{7}$
 $2 \sqrt{7}$

 $4 \sqrt{7}-35 \sqrt{2}$

$14 \sqrt{7}$

Simplify $\sqrt[3]{-108}-3 \sqrt[3]{4}$

$3 i \sqrt{4}$

$$
-4 \sqrt{3}
$$

$$
-3 \sqrt[3]{4}
$$

Simplify $\sqrt{-108 y^{7}}$ Leyiv $\sqrt{3 y} \quad \sqrt{-1}=i$

$$
\sqrt{-1} \cdot \sqrt{108}
$$

$$
6 y^{3} i \sqrt{3 y}
$$

$$
3 y i \sqrt{6 y^{5}}
$$

$$
6 y^{3} \sqrt{-3 y}
$$

Solve $(x-4)^{2}-5=20 \sqrt{(x-4)^{2}}=\sqrt{25}$

$$
x-4= \pm 5
$$

$$
\{9,-1\} \quad \begin{array}{ll}
\{9\} \quad \begin{array}{l}
x-4=5 \\
+4 \\
x-4
\end{array} \quad \begin{array}{l}
x-4=-5 \\
+4
\end{array}+14 \\
x=9 & x=-\mid \text { No Solution }
\end{array}
$$

Solve $12 x^{2}-9 x=-12$

$$
\begin{aligned}
& \text { le } \left.\left.\begin{array}{ll}
12 x^{2}-9 x=-12 \\
12 x^{2}-9 x+12=0 & 3\left(4 x^{2}-3 x+4\right)=0 \\
\left\{\frac{3+i \sqrt{7}}{8}, \frac{9-i \sqrt{7}}{8}\right\} & \left\{\frac{3+\sqrt{73}}{8}, \frac{3-\sqrt{73}}{8}\right\}
\end{array}\right\} \begin{array}{l}
\frac{-(-3) \pm \sqrt{1-3)^{2}-4(4)(4)}}{2(4)} \\
\end{array}, \frac{-3+\sqrt{73}}{8}, \frac{-3-\sqrt{73}}{8}\right\}
\end{aligned}
$$

$$
\begin{array}{r}
\left.\left\{\frac{3+i \sqrt{55}}{8}, \frac{3-i \sqrt{55}}{8}\right\}\right) \frac{3 \pm \sqrt{9-64}}{8} \\
3 \frac{ \pm i \sqrt{+55}}{8}
\end{array}
$$

$$
3 \pm \sqrt{5}
$$

$$
\begin{aligned}
& \text { Solve } x^{2}-13 x+36=0 \\
& \begin{array}{r}
-1 \widehat{36} \\
-2-18
\end{array} \\
& \begin{array}{l}
-3-12 \\
-4-9
\end{array}\{9\} \quad x-9=0 \quad x=9 \\
& \{-4,-9\} \\
& \{3,12\} \\
& \{4,9\}
\end{aligned}
$$

Solve $4 x^{2}=-20 x$

$$
\begin{gathered}
4 x^{2}+20 x=0 \\
4 x(x+5)=0 \quad 00,-5\} \\
4 x=0 \quad x+5-0 \\
\{-5\} \quad x=0 \quad x=-5 \quad\{4,5\} \\
\{-4,-5\}
\end{gathered}
$$

Simplify $(2-i) \widehat{(2+6 i)}$

-10

Simplify $(5+2 i)+(8-i)$

$$
13+\left.i\right|_{42+11 i}
$$

42

$$
40-2 i
$$

$13+i$

$$
\begin{array}{r}
\text { Simplify }(2+7 i)^{2} \quad \begin{array}{c}
2+7 i)(2+7 i) \\
4+14 i+14 i+49 i^{2} \\
-45+28 i
\end{array} \\
=4-28 i+49 i^{2} \\
-49 i
\end{array}
$$

Simplify $(5-3 i)(5+3 i)$

$$
25+15 x-15 i-q\left(e^{2}\right)
$$
 $25+6 i$

$25+9$
$25-9 i$
16

If a football is kicked straight upward, then the height $h(t)$ of the football in feet at time t in seconds is given by $h(t)=-16 t^{2}+64 t+10$.

$$
\begin{aligned}
& -16(4)^{2}+64(4)+60=10 \\
& =1622)^{2}+64(2)+10=24
\end{aligned}
$$

$$
\frac{k(b)-k(a)}{b-a}
$$

What is the average rate of change of the height of the football on the interval $[2,4]$? $-16 \mathrm{ft} / \mathrm{sec}$

$-64 \mathrm{ft} / \mathrm{sec}$

If a football is kicked straight upward, then the height $h(t)$ of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

How long does it take the football to return to earth (round to the nearest hundredth?

4 sec

4.15 sec
4.5 sec

5 sec

If a football is kicked straight upward, then the height $h(t)$ of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

How long is the ball above a height of 50 feet?
Hint: Set the equation equal to 50 , then subtract your answers
2.44 sec
3.32 sec

2 sec
3.67 sec

If a football is kicked straight upward, then the height $h(t)$
of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

$$
\frac{-b}{2 a}
$$

How long does it take to reach the maximum height?
1 sec
2 sec
3 sec
4 sec

If a football is kicked straight upward, then the height $h(t)$
of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

$$
\frac{-b}{2 a}
$$

What is the maximum height?

Hint: Plug in last answer

88 ft
30 ft
74 ft
40 ft

If a football is kicked straight upward, then the height $h(t)$
of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

$$
\frac{-b}{2 a}
$$

What is the real world domain of the function?
[0, 4.15]

If a football is kicked straight upward, then the height $h(t)$
of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

$$
\frac{-b}{2 a}
$$

What is the real world range of the function?
$[-\infty, \infty]$
$[0,74]$
$(0,74)$
$(-\infty, \infty)$

If a football is kicked straight upward, then the height $h(t)$ of the football in feet at time t in seconds is given by

$$
h(t)=-16 t^{2}+64 t+10
$$

$$
\frac{-b}{2 a}
$$

What is the height of the football 4 seconds after it is kicked?

Solve the following system of equations, show all your work. (use the graph if you would like)

$$
\begin{aligned}
& y=-x^{2}-5 \\
& y=x^{2}+10 x+3
\end{aligned}
$$

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility
Men	25.	26.	27.
Women	28.	29.	30.
Totals	31.	32.	

Find the joint and marginal relative frequency for (25), round to two decimal places if necessary
0.11
0.33
0.36
0.69

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility	
Men	25.	26.	27.	
Women	28.	29.	30.	
Totals	31.	32.	1	

Find the joint and marginal relative frequency for (26), round to two decimal places if necessary
0.31
0.11
0.36
0.69

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility
Men	25.	26.	Totals
Women	28.	29.	30.
Totals	31.	32.	

Find the joint and marginal relative frequency for (27), round to two decimal places if necessary
0.36
0.33
0.20
0.47

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility
Men	25.	26.	27.
Women	28.	29.	30.
Totals	31.	32.	

Find the joint and marginal relative frequency for (28), round to two decimal places if necessary
0.11
0.33
0.36
0.69

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility
Men	25.	26.	Totals
Women	28.	29.	30.
Totals	31.	32.	

Find the joint and marginal relative frequency for (29), round to two decimal places if necessary
0.36
0.33
0.20
0.47

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility	
Men	25.	26.	27.	
Women	28.	29.	30.	
Totals	31.	32.	1	

Find the joint and marginal relative frequency for (30), round to two decimal places if necessary

0.53	0.31
0.36	0.69

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility
Men	25.	26.	27.
Women	28.	29.	30.
Totals	31.	32.	1

Find the joint and marginal relative frequency for (31), round to two decimal places if necessary

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

Researchers surveyed 100 students on which superpower they would most like to have. This two-way table displays data for the sample of students who responded to the survey:

	Fly		Invisibility	
Men	25.	26.	27.	
Women	28.	29.	30.	
Totals	31.	32.	1	

Find the joint and marginal relative frequency for (32), round to two decimal places if necessary
0.31
0.11
0.36
0.69

	Fly	Invisibility	Totals
Male	29	9	38
Female	26	16	42
Totals	55	25	80

A gumball machine contains 5 pink gumballs, 10 yellow gumballs, and 7 blue gumballs. Find the probability of randomly selecting the following:

A pink or blue gumball

$$
\frac{3}{11} \quad \frac{5}{22} \quad \frac{35}{121} \quad \frac{6}{11}
$$

A gumball machine contains 5 pink gumballs, 10 yellow gumballs, and 7 blue gumballs. Find the probability of randomly selecting the following:

A yellow and then a blue gumball with replacement.

$$
\frac{35}{242} \quad \frac{17}{22} \quad \frac{5}{33} \quad \frac{10}{77}
$$

A gumball machine contains 5 pink gumballs, 10 yellow gumballs, and 7 blue gumballs. Find the probability of randomly selecting the following:

A yellow gumball

$$
\frac{5}{11} \quad \frac{5}{22} \quad \frac{7}{22} \quad \frac{10}{11}
$$

A gumball machine contains 5 pink gumballs, 10 yellow gumballs, and 7 blue gumballs. Find the probability of randomly selecting the following:

A blue gumball and then a pink gumball without replacement

$$
\frac{35}{43} \quad \frac{5}{66} \quad \frac{4}{7} \quad \frac{35}{484}
$$

