Bell Ringer

I can use properties of quadratic functions to identify and interpret roots, intercepts and the vertex of a quadratic function in the real world.

Jennifer hit a golf ball and it followed the projectile $h(\mathbf{b}) = -16t^2 + 100t$ where \mathbf{t} is the time and in seconds, and \mathbf{h} is the height of the ball. What was the starting height of the ball?

Jennifer hit a golf ball from the ground and it followed the projectile $h(t) = -16t^2 + 100t$ where **t** is the time and in seconds, and **h** is the height of the ball. For how long

was the ball in the air?

$$-16t^{2}+100t=0$$

$$-1$$

Jennifer hit a golf ball from the ground and it followed the projectile $h(t) = -16t^2 + 100t$ where **t** is the time and in seconds, and h is the height of the ball. Give a reasonable domain and range for the scenario.

D: [0,6.25] R: [0,156.25]

Jennifer hit a golf ball from the ground and it followed the projectile $h(t) = -16t^2 + 100t$ where t is the time and in seconds, and h is the height of the ball. What was the height of the ball after 2 seonds?

$$h(2) = -16(2)^{2} + 100(2)$$

$$h(2) = 136$$

h(2)=136 a+2 seconds, the ball was 136 ft high Jennifer hit a golf ball from the ground and it followed the projectile \mathbf{t} : \mathbf{t}

$$-10+2+100+-80=0$$

$$\frac{-100 \pm \sqrt{100^2 - 4(-16)(-80)}}{2(-16)}$$

Given Standard Form
$$f(x) = ax^{2} + bx + c$$
Find the:

Max/min Ver+ex

Starting height $(0,c)$ $1-in+$

Time in air $x-in+$

Domain and Range

Height at a specific time $h(4)$

Time at a specific height $= 80$

Name:		Hr:			
	Applica	ations of Quad	Iratics Day 1	(t,h)	
	25t++. ting height of the by	Het? 4.5-	ł	(Sewn	as, naqui
h) How long does	it take for the bullet	to return to the car	(-16)(4)	= 20.32	. seumls
		المارطا. المحاليا رطا.	1.39)	1,654.30	
D What is a realist	io domain and range	Eo'	१, ७६५.३१		
e) At a height of 30	feet how much ting 25t+4:	ne has passed?	, = ?	o	
-16+2+3				1,44	H IS WOOD
2. A contestant tosses second. The horsesho				_	

3. The number of mosquitoes M(x), in millions, in a certain area depends on the June rainfall x, in inches, according to the equation $M(x) = 10x - 2x^2$. What rainfall produces the maximum number of mosquitoes?

the height (in feet) and t is the time (in seconds) to tell how long the horseshoe was in the air.

4. The polynomial function $I(t) = -0.1t^2 + 1.9t$ represents the yearly income (or loss) from a real estate investment, where t is time in years after 1970. During what year does the maximum income occur?

5. Your company uses the quadratic model $y = -7x^2 + 350x$ to represent how many units y of a new product will be sold x weeks after its release. How many units can you expect to sell in week 27?

- 6. Your company uses the quadratic model $y = -4.5x^2 + 150x$ to represent the average number of new customers who will be signed on x weeks after the release of your new service. How many new customers can you expect to gain in week 8?
- 7. The profit for a company is given by $P(x) = -0.0002x^2 + 140x 250000$, where x is the number of units produced. What production level will yield a maximum profit?
- 8. A boy tosses a ball upward at 32 feet per second from a window that is 48 feet above the ground. The height of the ball above ground (in feet) at time t (in seconds) is given by $h(t) = -16t^2 + 32t + 48$.
 - a) Find the time at which the ball strikes the ground.
 - b) At a height of 60 feet how much time as passed?
- 9. A rock is thrown upward so that its distance, in feet, above the ground after t seconds is $h(t) = -14t^2 + 336t$.
 - a. Find the zeros of the function and explain the meaning in the context of the problem.
 - b. Find the vertex of the function and explain the meaning in the context of the problem.
 - c. What is a realistic Domain and Range?