VECTORS

- 2 types of quantities
- Vector
- Describe magnitude \& direction
- Examples of vector quantities... Velocity, force, acceleration, displacement
- Scalar
- Describe only magnitude
- Examples of scalar quantities... mass, time, distance, speed

DISTANCE \& DISPLACEMENT

- Distance
- Total length travelled, what your odometer would read for a car trip.
- Scalar Quantity
- Displacement
- Total length from starting point to ending point. Meaning the straight line dis from start to end
- Vector Quantity

Distance equals the sum of the magnitudes of $A, B, \& C$

Displacement equals magnitude of blue vector

HOW TO DRAW VECTORS

- Vector arrows are scaled representations of a vector quantity
- The direction of the arrow tells us the direction
- And the length of the arrow shows (combined with the scale) what the magnitude of the vector is
- Ex. 30 km North (scale $\rightarrow 1 \mathrm{~cm}=5 \mathrm{~km}$)

FINDING THE RESULTANT VECTOR .

- Resultant -- One vector that represents the combination of 2 or more vectors.
- To find the resultant means to combine (or resolve) vectors.
- Any number of vectors can all be combined together to create one resultant vector.
© Example. Johnny walks 4 km East then 3 km West

4 km East Vector

FINDING RESULTANT PROCEDURE

- 1) Determine a proper scale for drawing
- 2) Draw first vector to scale
- 3) Draw $2^{\text {nd }}$ vector to scale, with its tail connected to the head of the first
- Note, it does not matter which vector is drawn first
- Draw any other vectors (the third, fourth...etc.) in the same fashion
© 4) Draw the Resultant from the tail of the first vector to the head of the last to show proper direction
- 5) Determine the magnitude and direction of the resultant.
- Determine mathematically
- OR determine graphically

DETERMINING MAGNITUDE OF RESULTANT MATHEMATICALLY

- When resultant vector creates a right triangle, you can use pythagorean theorem to determine length of the hypotenuse
$\odot A^{2}+B^{2}=C^{2} \quad$ with C being the resultant
- So to solve for C the pythagorean becomes - $C=\sqrt{A^{2}+B^{2}}$

DETERMINING MAGNITUDE OF

 RESULTANT GRAPHIICALLY- Measure length of the resultant on your paper
- Use scale to bring back into the vector units
- For example... Scale is $1 \mathrm{~cm}=30 \mathrm{~m} / \mathrm{s}$
- You measure resultant to be 5 cm , so this means that the magnitude of your resultant is 5×30 or $150 \mathrm{~m} / \mathrm{s}$
- This method involves more measuring and not so much math
- You should be able to find the magnitude of the Resultant both Mathematically and Graphically!!!!

ANOTHER EXAMPLE

- Even though displacement vectors seem to make the most sense, this process works for any type of vectors
\odot Ex. A plane is flying with an engine speed of $100 \mathrm{~km} / \mathrm{hr}$ going East, but it is also encountering a $30 \mathrm{~km} / \mathrm{hr}$ wind directed towards the East. What is the plane's resultant velocity??

- If vectors are in two different planes (i.e. One going North and another going West) then that would be considered to be in 2 dimensions
- We can also combine vectors this way.
© For example. A car drives 30 km East, then 50 km North. What was the cars resultant displacement?
- (they are basically asking you what was the car's net movement).... Drawing an arrow from starting point to ending point Resultant Vector = 58.3 km

If found mathematically ..Use pythagorean $\left(A^{2}+B^{2}=C^{2}\right)$ theorem to find this $\mathrm{R}=\sqrt{\left(30^{2}+50^{2}\right)}$ $\mathrm{R}=58.3$

If found graphically Resultant should be 11.66 cm long. Then if we use our scale to convert that back into km... $11.66 \times 5=$ 58.3 km

ANOTHER 2-D EXAMPLE

- A plane flying due North with a speed of 200 $\mathrm{km} / \mathrm{hr}$ encounters a strong eastern wind of 60 km/hr
arrow should be 10 cm long, purple arrow should be 3 cm long

DIRECTION OF RESULTANT

- When finding the resultant it is important to include direction
- Usually resultants will not be directly in one of the four ($\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$) directions
- Use 'in between' directions... NE, NW, SE, or SW
- Sometimes you will be asked to include an angle to give a exactly specific direction
- So it could read as 30 degrees N of W
- The original vectors can also have a 'in between' directions, and you would have to draw and determine resultant just as before... except you would use a protractor to measure the angle.

A HARDER EXAMPLE

Find the resultant of these two vectors... 30 km at $55^{\circ} \mathrm{NE}$ and 20 km at $35^{\circ} \mathrm{SE}$

15 M/S 42° SW $20 \mathrm{M} / \mathrm{S}$ AND 25° SE

COMPONENTS OF VECTORS

- Now that we know how to find a resultant..
- We can also do the reverse process
- Finding Horizontal and Vertical components of vectors...
- In other words we are breaking down a vector into its two individual parts
- Ex. Telling someone how far you went East or how far you went North

COMPONENTS OF VECTORS

- You can find components graphically by the same method as before
- Using a scale, drawing, etc...
- If a vector is going directly N, E, S, or W , then it has no components
- If N or S then only vertical component
- If E or W then only horizontal component
- Horizontal and Vertical components do not affect each other !!
- They act separately
- For instance Thrown or launched objects
- Gravity
- ***Boat crossing a river***
- Monkey / Gun Example
- Bullet Example

Which boat reaches the opposite shore first???

oBoth boats reach at same time because only the horizontal component affects how long it takes to reach the opposite shore

- The boat with current will move faster, take a different path, and go a greater distance.... BUT still reaches the opposite shore at the same time
- B/c Horizontal components ARE NOT affected by Vertical components of Velocity

Projectile Motion

PROJECTILE MOTION

- Anytime an object is launched and only under the influence of gravity it is considered to be a projectile.
- Typically moving both horizontally and vertically
-Acceleration is occurring in the vertical (y)direction
- Velocity is constant in the horizontal (x) direction
๑ Horizontal is staying constant..... Vertical component is changing due to the acceleration of gravity**

PROJECTILE LAUNCHED HORIZONTALLY

$\odot \mathrm{V}_{\mathrm{x}}$ - horizontal component vector of velocity
$\odot \mathrm{V}_{\mathrm{y}}$-vertical component vector of velocity
$\odot \mathrm{V}_{\mathrm{x}} \rightarrow$ Constant
$\odot \mathrm{V}_{\mathrm{y}} \rightarrow$ increasing downward
\odot GRAVITY is increasing V_{y}, but does not affect V_{x}

OR DRAWN A LITTTLE DIFFERENTLY...

© Green Arrows \rightarrow resultant velocity vector of the ball at that point in its path

- Object launched upward at an angle of 45° with a velocity of $42.4 \mathrm{~m} / \mathrm{s}$.
- Initial Horizontal Velocity $=\mathrm{Vx}=+30 \mathrm{~m} / \mathrm{s}$
- Initial Vertical Velocity $=$ Vyi $=+30$

X-components are independent of Y-Components and the acceleration of gravity.. So both bullets fall at the same rate and reach ground at same time

RANGE AND HEIGHT

- Range - how far an object travels horizontally
- Height - how far an object travels vertically
- How to produce max height??
- Launch at 90° (straight up)
- How to produce max range??
- Launch at 45°
- Objects launched at complementary angles will produce equal ranges
- Ex. 30° and 60°

A projectile which is launched at a nearly 45 degree angle will travel more than twice as far as the same projectile launched with the same power but at an extreme angle such as $\mathbf{1 0}$ degrees or $\mathbf{8 0}$ degrees.

- Objects launched at complimentary angles will produce equal ranges
- 80° and 10° (as seen above) are complimentary angles
- http://www.ngsir.netfirms.com/englishhtm/ThrowABall. htm

SATELLITES

- Satellites--- objects that orbit another object
- Moon orbits Earth
- Earth and other planets orbit Sun
- These are all essentially just projectiles
- If objects fall because of gravity, how come satellits stay orbiting forever?? Or do they? Are they getting closer?? Are they falling??
○ How???

PROJECTILE BEING THROWN A DIFFERENT SPEEDS, FROM THE TOP OF A MOUNTAIN ABOVE THE ATMOSPHERE

- Satellites are moving so fast that the rate at which they are falling matches the rate at which the center object curves away from it
- So yes they are falling, but falling around Earth not into it and no if they are orbiting properly they will not be getting closer

