Get out old books! Or a notebook to write on :) pg H47

Essential Understanding A vector is a mathematical object that has both magnitude (size) and direction.

pg H47

Key Concept Vectors in Two Dimensions

A vector has magnitude and direction. You can describe a vector as a directed line segment with initial and terminal points. Two such segments with the same magnitude and direction represent the same vector.

$$\mathbf{v} = \overrightarrow{PQ}$$
 where $P = (1, 1)$ and $Q = (3, 4)$ and

$$\mathbf{v} = \overrightarrow{RS}$$
 where $R = (-1, 2)$ and $S = (1, 5)$

represent the same vector.

A vector has both magnitude and direction. You often use an arrow to represent a vector. The magnitude of a vector \mathbf{v} is the length of the arrow. You can denote it as $|\mathbf{v}|$. You show the direction of the vector by the initial point and the terminal point of the arrow.

The magnitude is the Le ng th

Vectors

Component Form
From origin (Initial Point)
Terminal Point written as <x,y>

b. Reasoning What other matrix transformations can you apply to vectors in matrix form?

To find magnitude: Put in component form and use Pythagorean Theorem to find length.

The position of a vector is not important. For this reason, a vector \mathbf{v} in standard position has initial point (0,0) and is completely determined by its terminal point (a,b). You can represent \mathbf{v} in component form as $\langle a,b\rangle$. Use the Pythagorean theorem to find the magnitude of \mathbf{v} , $|\mathbf{v}|=\sqrt{a^2+b^2}$.

pg H49

pg H49

14

Scalar multiplication of a vector by a positive number (other than 1) changes only the magnitude. Multiplication by a negative number (other than -1) changes the magnitude and reverses the direction of the vector.

pg H49-50

PH49-50

pg H50

For $v = \langle 1, -2 \rangle$ and $w = \langle 2, 3 \rangle$, what is the graph of the following vectors?

B w and -2w

$$-2\mathbf{w} = -2\langle 2, 3 \rangle$$
$$= \langle -2(2), -2(3) \rangle$$
$$= \langle -4, -6 \rangle$$

If $\mathbf{v} = \langle v_1, v_2 \rangle$ and $\mathbf{w} = \langle w_1, w_2 \rangle$, the **dot product** $\mathbf{v} \cdot \mathbf{w}$ is $v_1 w_1 + v_2 w_2$. If $\mathbf{v} \cdot \mathbf{w} = 0$, the two vectors are **normal**, or perpendicular, to each other.

Got it pg H50

b.
$$\langle 3, \frac{5}{6} \rangle, \langle -\frac{10}{9}, 4 \rangle$$

$$| 2(-\frac{10}{4}) + \frac{2}{3}(4)^{2}$$

$$| -\frac{10}{3} + \frac{10}{3}$$

$$= 0$$

hw A6 #s 1-29 odds