Bell Ringer

Solutions

Section 9.4 - Composition of Isometries

1. ΔXYZ has vertices X(-4, 0), Y(-6, 6) and Z(-1, 5). What are the coordinates of the vertices of $(R_{x=3} \circ T_{<3,4>})(\Delta XYZ)$

X"(7,4), Y"(9,10), Z"(4,9)

2. Write a single transformation rule that has the same effect on the point shown as each composition of transformations.

a.
$$T_{<-3,5>} \circ T_{<-1,2>}$$

 $\frac{T_{<-4,7>}}{\text{(left 4 and up 7)}}$

b.
$$R_{y=-2} \circ R_{y=5}$$

 $T_{< 0,-14>}$

Translates down 14

3. Write an exponential equation with a y-intercept of 3 and a common ratio of $\mbox{\%}$

$$Y = 3(\frac{1}{2})^{x}$$

4. Write a linear equation with a y-intercept of 3 and a slope of %

$$Y = \frac{1}{2}x + \frac{3}{4}$$

5. Write an exponential equation of a geometric sequence with an initial value of 3 and a common ratio of ½

$$\Delta(n) = 3(\frac{1}{2})^{n-1}$$

correct 9.3 #s 1-4, 7-9, 11-14, 20, 27-32

<u>..</u>7.

2.

8. R

11. Draw \overline{AO} and $\overline{A'O}$ and then measure $\angle AOA'$.

.3.

••12. The diagram shows a reflection, not a rotation. R' is a 115° clockwise rotation of R. All points of △PQR must be rotated counterclockwise.

orientation. A rotation has the same orientation.

14. (-x, -y); Sample: The coordinates are the same as a single rotation of 180° since $135^{\circ} + 45^{\circ} = 180^{\circ}$.

20. 168.75°

27. H

28. M

29. BC

30. C

31. LM

🙂 32. A

due Wednesday 9.4 #s 1-8, 10-16 evens, 19-20, 26-32 evens Hw Tracker due Wednesday

A reflection across 2 parallel lines is the same as one **translation**

Distance?

touble the
fustance

touble the
fustance

telween | | ins

Angle?

double angle of lines of refl.

Glide Reflection... pg 514

Any composition of isometries can be represented by a reflection, translation, rotation, or glide reflection. A **glide reflection** is the composition of a translation (a glide) and a reflection across a line parallel to the direction of translation. You can map a left paw print onto a right paw print with a glide reflection.

p514

solution...

Got it pg 514

p514

State the line of reflection

Reflecting over y = -x

9.4 #s 1-8, 10-16 evens 19-20, 26-32 evens graph paper for 12,14 &16

May 06, 2019

Review...

Perform the following Transformation $T_{<-4, 2>}(ABC)$

