Bell Ringer

Solutions

correct 8.2

hw 8.2 #s 8-12, 14-17, 21-27 odds, 36-40 evens

8. 200 m²

9. 64 ft²

10. 96 cm²

11. 36 in.²

12. No; explanations may vary. Sample: two altitudes of an obtuse \triangle lie outside the \triangle . The legs of a right \triangle are two altitudes of the \triangle .

... The area of $\triangle ABC$ is half the area of the \square .

15. 4 in.

16. B

17. 14 cm

18. 18

21. 15 units²

23. 6 units²

25. 27 units²

27. 21 units²

. 20 units²

38. 312.5 ft²

. 12,800 m²

due tomorrow 8.3 #s 7-12, 14-17, 20-24

pg 459

Objective To classify polygons in the coordinate plane

p459

Triangle classification...

2

pg 459

In the Solve It, you formed a polygon on a grid. In this lesson, you will classify polygons in the coordinate plane.

Essential Understanding You can classify figures in the coordinate plane using the formulas for slope, distance, and midpoint.

The chart below reviews these formulas and tells when to use them.

Key Concept Formulas and the Coordinate Plane

Formula

Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Slope Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

When to Use It

To determine whether

- · sides are congruent
- · diagonals are congruent

To determine

- the coordinates of the midpoint of a side
- · whether diagonals bisect each other

To determine whether

- opposite sides are parallel
- · diagonals are perpendicular
- · sides are perpendicular

p459

solution

Is $\triangle ABC$ scalene, isosceles, or equilateral?

The vertices of the triangle are A(0, 1), B(4, 4), and C(7, 0). Find the lengths of the sides using the Distance Formula. $CA = 5\sqrt{2}$ BC = 5

Since AB = BC = 5, $\triangle ABC$ is isosceles.

got it pg 460

Got lt? $\triangle DEF$ has vertices D(0,0), E(1,4), and F(5,2). Show that $\triangle DEF$

Show that QRST is a parallelogram.

Solution Problem 2 Classifying a Quadrilateral

Show that QRST is a parallelogram.

Step 1 Use the Slope Formula to find the slopes of the sides of QRST.

Slope of
$$\overline{QR}$$
: $\frac{1-3}{-3-2} = \frac{-2}{-5} = \frac{2}{5}$

Slope of
$$\overline{RS}$$
: $\frac{3-(-1)}{2-3} = \frac{4}{-1} = -4$

Slope of
$$\overline{ST}$$
: $\frac{-1-(-3)}{3-(-2)} = \frac{2}{5}$

Slope of
$$\overline{QT}$$
: $\frac{1-(-3)}{-3-(-2)} = \frac{4}{-1} = -4$

Step 2 Compare the slopes of the opposite sides of QRST.

The slopes of opposite sides of QRST are equal, so opposite sides are parallel. Therefore, QRST is a parallelogram.

not in book

$$K(-4.0)$$
 $1(0.4)$
 $(\frac{X_1+X_2}{2}, \frac{y_1+y_2}{2})$
 $(\frac{-4}{2}, \frac{4}{2})$
 $\rightarrow (-2, 2)$

solution

Problem 3 Classifying a Quadrilateral

B(4,2)

C(4 - 2)

(8,0)

A kite is shown at the right. What is the most precise classification of the quadrilateral formed by connecting the midpoints of the sides of the kite?

Step 1 Find the midpoint of each side of the kite.

```
A = \text{midpoint of } \overline{KI} = (-2, 2)
```

$$B = \text{midpoint of } \overline{IT} = (4, 2)$$

$$B = \text{midpoint of } \overline{IT} = (4, 2)$$

 $C = \text{midpoint of } \overline{TE} = (4, -2)$
 $D = \text{midpoint of } \overline{EK} = (-2, -2)$

Step 2 Draw a diagram of ABCD.

Step 3 Classify ABCD.

$$AB = 6$$

$$BC = 4$$

$$CD = 6$$
 $DA = 4$

(0.4) / ty

0

2

Since opposite sides are congruent, ABCD is a parallelogram.

Since \overline{AB} and \overline{CD} are both horizontal and \overline{BC} and \overline{DA} are both vertical, the segments form right angles.

So, ABCD is a rectangle.

got it pg 461

Got lt? An isosceles trapezoid has vertices A(0, 0), B(2, 4), C(6, 4), and D(8, 0). Show that the quadrilateral formed by connecting the midpoints of the

sides of *ABCD* is a rhombus.

p461

due Thursday hw 8.4 #s 8-9, 11-12, 15-17, 25-27